Unknown

Dataset Information

0

LCM and RNA-seq analyses revealed roles of cell cycle and translational regulation and homoeolog expression bias in cotton fiber cell initiation.


ABSTRACT:

Background

Cotton fibers provide a powerful model for studying cell differentiation and elongation. Each cotton fiber is a singular and elongated cell derived from epidermal-layer cells of a cotton seed. Efforts to understand this dramatic developmental shift have been impeded by the difficulty of separation between fiber and epidermal cells.

Results

Here we employed laser-capture microdissection (LCM) to separate these cell types. RNA-seq analysis revealed transitional differences between fiber and epidermal-layer cells at 0 or 2 days post anthesis. Specifically, down-regulation of putative cell cycle genes was coupled with upregulation of ribosome biosynthesis and translation-related genes, which may suggest their respective roles in fiber cell initiation. Indeed, the amount of fibers in cultured ovules was increased by cell cycle progression inhibitor, Roscovitine, and decreased by ribosome biosynthesis inhibitor, Rbin-1. Moreover, subfunctionalization of homoeologs was pervasive in fiber and epidermal cells, with expression bias towards 10% more D than A homoeologs of cell cycle related genes and 40-50% more D than A homoeologs of ribosomal protein subunit genes. Key cell cycle regulators were predicted to be epialleles in allotetraploid cotton. MYB-transcription factor genes displayed expression divergence between fibers and ovules. Notably, many phytohormone-related genes were upregulated in ovules and down-regulated in fibers, suggesting spatial-temporal effects on fiber cell development.

Conclusions

Fiber cell initiation is accompanied by cell cycle arrest coupled with active ribosome biosynthesis, spatial-temporal regulation of phytohormones and MYB transcription factors, and homoeolog expression bias of cell cycle and ribosome biosynthesis genes. These valuable genomic resources and molecular insights will help develop breeding and biotechnological tools to improve cotton fiber production.

SUBMITTER: Ando A 

PROVIDER: S-EPMC8082777 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC3554454 | biostudies-literature
| S-EPMC8556910 | biostudies-literature
| S-EPMC2997001 | biostudies-literature
| S-EPMC8583818 | biostudies-literature
| S-EPMC4469610 | biostudies-literature
2014-03-18 | PXD000178 | Pride
2006-04-12 | GSE4652 | GEO
| S-EPMC5935921 | biostudies-literature
| S-EPMC4070576 | biostudies-literature
2024-03-14 | GSE227870 | GEO