Unknown

Dataset Information

0

SARS-CoV-2 spike protein binding selectively accelerates substrate-specific catalytic activity of ACE2.


ABSTRACT: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel coronavirus that has given rise to the devastating global pandemic. In most cases, SARS-CoV-2 infection results in the development of viral pneumonia and acute respiratory distress syndrome, known as 'coronavirus disease 2019' or COVID-19. Intriguingly, besides the respiratory tract, COVID-19 affects other organs and systems of the human body. COVID-19 patients with pre-existing cardiovascular disease have a higher risk of death, and SARS-CoV-2 infection itself may cause myocardial inflammation and injury. One possible explanation of such phenomena is the fact that SARS-CoV-2 utilizes angiotensin-converting enzyme 2 (ACE2) as the receptor required for viral entry. ACE2 is expressed in the cells of many organs, including the heart. ACE2 functions as a carboxypeptidase that can cleave several endogenous substrates, including angiotensin II, thus regulating blood pressure and vascular tone. It remains largely unknown if the SARS-CoV-2 infection alters the enzymatic properties of ACE2, thereby contributing to cardiovascular complications in patients with COVID-19. Here, we demonstrate that ACE2 cleavage of des-Arg9-bradykinin substrate analogue is markedly accelerated, while cleavage of angiotensin II analogue is minimally affected by the binding of spike protein. These findings may have implications for a better understanding of COVID-19 pathogenesis.

SUBMITTER: Kiseleva AA 

PROVIDER: S-EPMC8083718 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-BSST649 | biostudies-other
| EMPIAR-11181 | biostudies-other
| EMPIAR-11180 | biostudies-other
| EMPIAR-11179 | biostudies-other
| S-SCDT-EMM-2022-15904 | biostudies-other
| EMPIAR-11176 | biostudies-other
| EMPIAR-11177 | biostudies-other
| S-EPMC8370119 | biostudies-literature
| S-EPMC7983027 | biostudies-literature
| S-EPMC7654858 | biostudies-literature