Copper/reduced graphene oxide film modified electrode for non-enzymatic glucose sensing application.
Ontology highlight
ABSTRACT: Numerous studies suggest that modification with functional nanomaterials can enhance the electrode electrocatalytic activity, sensitivity, and selectivity of the electrochemical sensors. Here, a highly sensitive and cost-effective disposable non-enzymatic glucose sensor based on copper(II)/reduced graphene oxide modified screen-printed carbon electrode is demonstrated. Facile fabrication of the developed sensing electrodes is carried out by the adsorption of copper(II) onto graphene oxide modified electrode, then following the electrochemical reduction. The proposed sensor illustrates good electrocatalytic activity toward glucose oxidation with a wide linear detection range from 0.10 mM to 12.5 mM, low detection limit of 65 µM, and high sensitivity of 172 μA mM-1 cm-2 along with satisfactory anti-interference ability, reproducibility, stability, and the acceptable recoveries for the detection of glucose in a human serum sample (95.6-106.4%). The copper(II)/reduced graphene oxide based sensor with the superior performances is a great potential for the quantitation of glucose in real samples.
Project description:A photoelectrochemical (PEC) sensor with excellent sensitivity and detection toward copper (II) ions (Cu2+) was developed using a cadmium sulphide-reduced graphene oxide (CdS-rGO) nanocomposite on an indium tin oxide (ITO) surface, with triethanolamine (TEA) used as the sacrificial electron donor. The CdS nanoparticles were initially synthesized via the aerosol-assisted chemical vapor deposition (AACVD) method using cadmium acetate and thiourea as the precursors to Cd2+ and S2-, respectively. Graphene oxide (GO) was then dip-coated onto the CdS electrode and sintered under an argon gas flow (50 mL/min) for the reduction process. The nanostructured CdS was adhered securely to the ITO by a continuous network of rGO that also acted as an avenue to intensify the transfer of electrons from the conduction band of CdS. The photoelectrochemical results indicated that the ITO/CdS-rGO photoelectrode could facilitate broad UV-visible light absorption, which would lead to a higher and steady-state photocurrent response in the presence of TEA in 0.1 M KCl. The photocurrent decreased with an increase in the concentration of Cu2+ ions. The photoelectrode response for Cu2+ ion detection had a linear range of 0.5-120 μM, with a limit of detection (LoD) of 16 nM. The proposed PEC sensor displayed ultra-sensitivity and good selectivity toward Cu2+ ion detection.
Project description:A highly sensitive amperometric glucose sensor was developed by immobilization of glucose oxidase (GOx) onto multi-layer reduced graphene oxide (MRGO) sheets decorated with platinum and gold flower-like nanoparticles (PtAuNPs) modified Au substrate electrode. The fabricated MRGO/PtAuNPs modified hybrid electrode demonstrated high electrocatalytic activities toward oxidation of H2O2, to which it had a wide linear response that ranged from 0.5 to 8 mM (R2 = 0.997), and high sensitivity of 506.25 μA/mMcm2. Furthermore, glucose oxidase-chitosan composite and cationic polydiallyldimethylammonium chloride (PDDA) were assembled by a casting method on the surface of MRGO/PtAuNPs modified electrode. This as-fabricated hybrid biosensor electrode exhibited high electrocatalytic activity for the detection of glucose in PBS. It demonstrated good analytical properties in terms of a low detection limit of 1 μM (signal-to-noise ratio of 3), short response time (3 s), high sensitivity (17.85 μA/mMcm2), and a wide linear range (0.01-8 mM) for glucose sensing. These results reveal that the newly developed sensing electrode offers great promise for new type enzymatic biosensor applications.
Project description:A facile cuprous oxide nanoparticles functionalized electro-reduced graphene oxide modified glassy carbon electrode (denoted as Cu₂O NPs-ERGO/GCE) was fabricated via a simple physical adsorption and electrochemical reduction approach. Cyclic voltammetry and second-order derivative linear scan voltammetry were used to investigate the electrocatalysis oxidation of vanillin on the Cu₂O NPs-ERGO/GCE. The compound yielded a well-defined voltammetric response in 0.1 M H₂SO₄ at 0.916 V (vs. saturated calomel electrode (SCE)). A linear calibration graph was obtained in the concentration range of 0.1 μM to 10 μM and 10 μM to 100 μM, while the detection limit (S/N = 3) is 10 nM. In addition, the Cu₂O NPs-ERGO/GCE presented well anti-interference ability, stability, and reproducibility. It was used to detect vanillin sensitively and rapidly in different commercial food products, and the results were in agreement with the values obtained by high performance liquid chromatography.
Project description:A novel copper (II) ions [Cu(II)]-graphene oxide (GO) nanocomplex-modified screen-printed carbon electrode (SPCE) is successfully developed as a versatile electrochemical platform for construction of sensors without an additionally external redox probe. A simple strategy to prepare the redox GO-modified SPCE is described. Such redox GO based on adsorbed Cu(II) is prepared by incubation of GO-modified SPCE in the Cu(II) solution. This work demonstrates the fabrications of two kinds of electrochemical sensors, i.e., a new label-free electrochemical immunosensor and non-enzymatic sensor for detections of immunoglobulin G (IgG) and glucose, respectively. Our immunosensor based on square-wave voltammetry (SWV) of the redox GO-modified electrode shows the linearity in a dynamic range of 1.0-500 pg.mL-1 with a limit of detection (LOD) of 0.20 pg.mL-1 for the detection of IgG while non-enzymatic sensor reveals two dynamic ranges of 0.10-1.00 mM (sensitivity = 36.31 μA.mM-1.cm-2) and 1.00-12.50 mM (sensitivity = 3.85 μA.mM-1.cm-2) with a LOD value of 0.12 mM. The novel redox Cu(II)-GO composite electrode is a promising candidate for clinical research and diagnosis.
Project description:A promising α-FeOOH-reduced graphene oxide aerogel (FeOOH-GA) has been prepared for the assembly of an enzyme electrode. The α-FeOOH-reduced graphene oxide aerogel was characterized by X-ray powder diffraction, field emission scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, Raman, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy. The results reveal that graphene oxide is reduced by Fe2+ ion and α-FeOOH nanorods anchored on the reduced graphene oxide sheet through the Fe-O-C bond. Analyses using scanning electron microscopy and the Brunauer-Emmett-Teller method show that FeOOH-GA displays a various and interconnected pore structure. The FeOOH-GA was used as a support material on the glass carbon electrode (GCE) for glucose oxidase (GOD). Electrochemistry properties and bioelectrocatalytic activities of Nafion/GOD/FeOOH-GA/GCE were achieved from cyclic voltammetry and electrochemical impedance spectroscopy. The results show that Nafion/GOD/FeOOH-GA/GCE maintains outstanding catalytic activity and electrochemical properties. The FeOOH-GA could immobilize GOD through the hydrophobicity of the reduced graphene oxide and hydroxide radical of α-FeOOH. Appropriate α-FeOOH and diversified pore structure are beneficial for electron transfer, enzyme electrode storage, and interfacial electron transfer rate. All results indicated that the α-FeOOH-reduced graphene oxide aerogel as a carrier could effectively immobilize the tested enzyme.
Project description:Increasing urbanization and industrialization lead to the release of metals into the biosphere, which has become a serious issue for public health. In this paper, the direct electrochemical reduction of zinc ions is studied using electrochemically reduced graphene oxide (ERGO) modified glassy carbon electrode (GCE). The graphene oxide (GO) was fabricated using modified Hummers method and was electrochemically reduced on the surface of GCE by performing cyclic voltammograms from 0 to -1.5 V. The modification was optimized and properties of electrodes were determined using electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The determination of Zn(II) was performed using differential pulse voltammetry technique, platinum wire as a counter electrode, and Ag/AgCl/3 M KCl reference electrode. Compared to the bare GCE the modified GCE/ERGO shows three times better electrocatalytic activity towards zinc ions, with an increase of reduction current along with a negative shift of reduction potential. Using GCE/ERGO detection limit 5 ng·mL-1 was obtained.
Project description:Diagnosis and monitoring of glucose level in human blood has become a prime necessity to avoid health risk and to cater this, a sensor's performance with wide linearity range and high sensitivity is required. This work reports the use of ternary composite viz. MG-Cu2O (rGO supported MXene sheet with Cu2O) for non-enzymatic sensing of glucose. It has been prepared by co-precipitation method and characterized with X-ray powder diffraction, Ultraviolet-visible absorption spectroscopy (UV-Vis), Raman spectroscopy, Field emission scanning electron microscopy, High resolution transmission electron microscopy and Selected area diffraction. These analyses show a cubic structure with spherical shaped Cu2O grown on the MG sheet. Further, the electrocatalytic activity was carried out with MG-Cu2O sensing element by cyclic voltammetry and chronoamperometry technique and compared with M-Cu2O (MXene with Cu2O) composite without graphene oxide. Of these, MG-Cu2O composite was having the high defect density with lower crystalline size of Cu2O, which might enhance the conductivity thereby increasing the electrocatalytic activity towards the oxidation of glucose as compared to M-Cu2O. The prepared MG-Cu2O composite shows a sensitivity of 126.6 µAmM-1 cm-2 with a wide linear range of 0.01to 30 mM, good selectivity, good stability over 30 days and shows a low Relative Standard Deviation (RSD) of 1.7% value towards the sensing of glucose level in human serum. Thus, the aforementioned finding indicates that the prepared sensing electrode is a well suitable candidate for the sensing of glucose level for real time applications.
Project description:In this paper, a hybrid nanocomposite (MB-rGO) was synthesized based on the π-π stacking interactions between methylene blue (MB) and reduced graphene oxide (rGO). The as-synthesized nanocomposite was characterized by SEM, TEM, XRD, FTIR, UV-vis and XPS spectra. UV-vis spectroscopy and electrochemical tests suggested the MB-rGO modified on the electrode exhibited glucose oxidase-mimetic catalytic activity towards glucose, and displayed excellent electrocatalytic performance for electrochemical detection of glucose with a wide linear range from 1.04 to 17.44 mM, a low detection limit of 45.8 μM and a large sensitivity of 13.08 μA mM-1 cm-2. The proposed glucose sensor also showed high stability, reproducibility and good abilities of anti-interference to dopamine, ascorbic acid and uric acid. Moreover, the modified electrode was used to determine glucose concentration in human blood serum samples with satisfactory results.
Project description:A novel carbon nanotubes (CNTs) and reduced holey graphene oxide film (RHGOF) sandwich structure has been fabricated to enhance its electrochemical properties. CNTs are grown by a catalyst assisted chemical vapor deposition technique, interpenetrated between the RHGOF layers. A RHGOF/CNTs hybrid film is used as a binder-free supercapacitor electrode. The grown CNTs in the graphene layers structure act as spacers and bridges to increase the counductivity of RHGOF, while the grown CNTs on the surfaces of the graphene contribute to increase the specific surface area of RHGOF. The results demonstrate that the synthesized porous, flexible and binder free hybrid electrode has advantages of higher ion diffusion rate, longer diffusion length and larger ion accessible surface area as compared to the pristine graphene which results in an extra ordinary galvanostatic charge-discharge specific capacitance of 557 F/g at a current density of 0.5 A/g, with excellent rate capabilities and superior cyclic stabilities.