Project description:Although a subset of recent studies have suggested that red blood cell (RBC) storage length is associated with adverse patient outcomes, others have shown no such relationship. Adults may be transfused with RBC units of different storage lengths, and existing studies do not take into consideration that fresh RBCs may alter responses to concurrently transfused stored RBCs. To test this possibility, we utilized a murine model and investigated transfusion outcomes of fresh, stored, or fresh-plus-stored RBCs.Fresh, 14-day-stored or fresh plus 14-day-stored leukoreduced RBCs from HOD-transgenic donors (with RBC-specific expression of hen egg lysozyme, ovalbumin, and human Duffy(b)) were transfused into naïve C57BL/6 recipients. Serum cytokines and anti-HOD alloimmunization were evaluated after transfusion.In six of six experiments (n = 90 mice total), a proinflammatory serum cytokine storm of interleukin-6, keratinocyte-derived chemokine/CXCL1, and monocyte chemoattractant protein-1 was observed in transfusion recipients of stored but not fresh RBCs, along with high degrees of anti-HOD alloimmunization. However, concurrent transfusion of fresh HOD RBCs along with stored HOD RBCs significantly decreased these adverse outcomes (p < 0.05).These results are consistent with fresh murine HOD RBCs losing protective properties during storage, and introduce a previously unrecognized variable in RBC storage studies. If translatable to humans, uniform "old blood" groups may be needed in future clinical studies to more accurately investigate the biologic effects of older RBC units.
Project description:The transfusion of red blood cells (RBCs) with maximum therapeutic efficacy is a major goal in transfusion medicine. One of the criteria used in determining stored RBC quality is end-of-storage hemolysis. Between donors, a wide range of hemolysis is observed under identical storage conditions. Here, a potential mechanism for this wide range is investigated. We hypothesize that the magnitude of hemolysis is a heritable trait. Also, we investigated correlations between hemolysis and RBC metabolites; this will establish pathways influencing hemolysis as future targets for genetic analysis.Units of RBCs from identical and nonidentical twins were collected and stored under standard conditions for 56 days. Hemolysis, adenosine triphosphate (ATP), and total glutathione (tGSH) were measured throughout storage. Nontargeted metabolic analyses were performed on RBCs that had been stored for 28 days. Heritability was determined by comparing values between identical and nonidentical twins.Hemolysis was found to be heritable (mean?>?45%) throughout the storage period. Potential correlations were observed between hemolysis and metabolites from the purine metabolism, lysolipid, and glycolysis pathways. These also exhibited heritability (>20%). No correlation was found with ATP or tGSH.The susceptibility of RBCs to lysis during storage is partly determined by inheritance. We have also uncovered several pathways that are candidate targets for future genomewide association studies. These findings will aid in the design of better storage solutions and the development of donor screening tools that minimize hemolysis during storage.
Project description:The degeneration of red blood cells (RBCs) during storage is a major issue in transfusion medicine. Family studies in the 1960s established the heritability of the RBC storage lesion based on poststorage adenosine triphosphate (ATP) concentrations. However, this critical discovery has not been further explored. In a classic twin study we confirmed the heritability of poststorage ATP concentrations and established the heritability of many other RBC metabolites.ATP concentrations and metabolomic profiles were analyzed in RBC samples from 18 twin pairs. On samples stored for 28 days, the heritability of poststorage ATP concentrations were 64 and 53% in CP2D- and AS-3-stored RBCs, respectively.Metabolomic analyses identified 87 metabolites with an estimated heritability of 20% or greater. Thirty-six metabolites were significantly correlated with ATP concentrations (p ? 0.05) and 16 correlated with borderline significance (0.05 ? p ? 0.10). Of the 52 metabolites that correlated significantly with ATP, 24 demonstrated 20% or more heritability. Pathways represented by heritable metabolites included glycolysis, membrane remodeling, redox homeostasis, and synthetic and degradation pathways.We conclude that many RBC metabolite concentrations are genetically influenced during storage. Future studies of key metabolic pathways and genetic modifiers of RBC storage could lead to major advances in RBC storage and transfusion therapy.
Project description:In transfusion medicine, there has been a decades-long debate about whether the age of stored red blood cells (RBCs) is a factor in transfusion efficacy. Existing clinical studies investigating whether older RBCs cause worse clinical outcomes have provided conflicting information: some have shown that older blood is less effective, while others have shown no such difference. The controversial results could have been biased by the vastly different conditions of the patients involved in the clinical studies; however, another source of inconsistency is a lack of understanding of how well and quickly stored RBCs can recover their key parameters, such as stiffness and ATP concentration, after transfusion. In this work, we quantitatively studied the stiffness and ATP recovery of stored RBCs in 37 °C human serum. The results showed that in 37 °C human serum, stored RBCs are able to recover their stiffness and ATP concentration to varying extents depending on how long they have been stored. Fresher RBCs (1-3 weeks old) were found to have a significantly higher capacity for stiffness and ATP recovery in human serum than older RBCs (4-6 weeks old). For instance, for 1-week-old RBCs, although the shear modulus before recovery was 1.6 times that of fresh RBCs, 97% of the cells recovered in human serum to have 1.1 times the shear modulus of fresh RBCs, and the ATP concentration of 1-week-old RBCs after recovery showed no difference from that of fresh RBCs. However, for 6-week-old RBCs, only ~70% of the RBCs showed stiffness recovery in human serum; their shear modulus after recovery was still 2.1 times that of fresh RBCs; and their ATP concentration after recovery was 25% lower than that of fresh RBCs. Our experiments also revealed that the processes of stiffness recovery and ATP recovery took place on the scale of tens of minutes. We hope that this study will trigger the next steps of comprehensively characterizing the recovery behaviors of stored RBCs (e.g., recovery of normal 2,3-DPG [2,3-Diphosphoglycerate]and SNO [S-nitrosation] levels) and quantifying the in vivo recovery of stored RBCs in transfusion medicine.
Project description:BackgroundThe transfusion of packed red blood cells (PRBC) is associated with various side effects, including storage damage to PRBCs. The cells change their structure, releasing potassium as well as lactate. Mechanical rinsing, available in many hospitals, is able to remove toxic substances and possibly minimizes the negative side effects of transfusion.ObjectiveThe primary aim of our study was to improve the quality of PRBCs before transfusion. The effects of different washing solutions on PRBC quality were analyzed.Material and methodsThis in vitro study compares 30 mechanically washed PRBCs. They were either processed with standard normal saline 0.9% (n = 15, N group) or a hemofiltration solution containing 4 mmol/l potassium (n = 15, HF group) by a mechanical rinsing device (Xtra, LivaNova, Munich, Germany). A subgroup analysis was performed based on the storage duration of the processed PRBCs (7, 14, 37 days). Samples were taken before washing (EKprä), immediately after washing (EKpost) and 10 h later (EKpost10h), after storage in the "wash medium" at room temperature. Concentrations of ATP (probability of survival in transfused erythrocytes), lactate, citrate and electrolytes (potassium, sodium, chloride, calcium) were tested.Results and conclusionMechanical rinsing improves pretransfusion quality of PRBC. Washing with a hemofiltration solution results in a more physiological electrolyte composition. Even 10 h after mechanical rinsing with a hemofiltration solution, the quality of 37-day-old PRBC is comparable to young PRBC that have been stored for 7 days and have not been washed. Washing stored PRBC increases the ATP content, which subsequently leads to an increased probability of survival of red cells after transfusion.
Project description:Anaerobic red blood cell (RBC) storage reduces oxidative damage, maintains adenosine triphosphate (ATP) and 2,3-diphosphoglycerate (DPG) levels, and has superior 24-hour recovery at 6 weeks compared to standard storage. This study will determine if removal of CO2 during O2 depletion by gas exchange may affect RBCs during anaerobic storage.This is a matched three-arm study (n?=?14): control, O2 and CO2 depleted with Ar (AN), and O2 depleted with 95%Ar/5%CO2 (AN[CO2 ]). RBCs in additives AS-3 or OFAS-3 were evenly divided into three bags, and anaerobic conditions were established by gas exchange. Bags were stored at 1 to 6°C in closed chambers under anaerobic conditions or ambient air, sampled weekly for up to 9 weeks for a panel of in vitro tests. A full metabolomics screening was conducted for the first 4 weeks of storage.Purging with Ar (AN) results in alkalization of the RBC and increased glucose consumption. The addition of 5% CO2 to the purging gas prevented CO2 loss with an equivalent starting and final pH and lactate to control bags (p?>?0.5, Days 0-21). ATP levels are higher in AN[CO2 ] (p?<?0.0001). DPG was maintained beyond 2 weeks in the AN arm (p?<?0.0001). Surprisingly, DPG was lost at the same rate in both control and AN[CO2 ] arms (p?=?0.6).Maintenance of ATP in the AN[CO2 ] arm demonstrates that ATP production is not solely a function of the pH effect on glycolysis. CO2 in anaerobic storage prevented the maintenance of DPG, and DPG production appears to be pH dependent. CO2 as well as O2 depletion provides metabolic advantage for stored RBCs.
Project description:Understanding the metabolites that are altered by donor red blood cell (RBC) storage and irradiation may provide insight into the metabolic pathways disrupted by the RBC storage lesion.Patterns of metabolites, representing more than 11,000 distinct mass-to-charge ratio (m/z) features, were compared between gamma-irradiated and nonirradiated CPDA-1-split RBCs from six human donors over 35 days of storage using multilevel sparse partial least squares discriminant analysis (msPLSDA), hierarchical clustering, pathway enrichment analysis, and network analysis.In msPLSDA analysis, RBC units stored 7 days or fewer (irradiated or nonirradiated) showed similar metabolomic profiles. By contrast, donor RBCs stored 10 days or more demonstrated distinct clustering as a function of storage time and irradiation. Irradiation shifted metabolic features to those seen in older units. Hierarchical clustering analysis identified at least two clusters of metabolites that differentiated between RBC units based on storage time and irradiation exposure, confirming results of the msPLSDA analysis. Pathway enrichment analysis, used to map the discriminatory biochemical features to specific metabolic pathways, identified four pathways significantly affected by irradiation and/or storage including arachidonic acid (p = 3.3 × 10(-33)) and linoleic acid (p = 1.61 × 10(-11)) metabolism.RBC storage under blood bank conditions produces numerous metabolic alterations. Gamma irradiation accentuates these differences as the age of blood increases, indicating that at the biochemical level irradiation accelerates metabolic aging of stored RBCs. Metabolites involved in the cellular membrane are prominently affected and may be useful biomarkers of the RBC storage lesion.
Project description:Cold storage of blood for 5 to 6 weeks has been shown to impair endothelial function after transfusion and has been associated with measures of end-organ dysfunction. Although the products of hemolysis, such as cell-free plasma hemoglobin, arginase, heme, and iron, in part mediate these effects, a complete analysis of transfused metabolites that may affect organ function has not been evaluated to date. Blood stored for either 5 or 42 days was collected from 18 healthy autologous volunteers, prior to and after autologous transfusion into the forearm circulation, followed by metabolomics analyses. Significant metabolic changes were observed in the plasma levels of hemolytic markers, oxidized purines, plasticizers, and oxidized lipids in recipients of blood stored for 42 days, compared with 5 days. Notably, transfusion of day 42 red blood cells (RBCs) increased circulating levels of plasticizers (diethylhexyl phthalate and derivatives) by up to 18-fold. Similarly, transfusion of day 42 blood significantly increased circulating levels of proinflammatory oxylipins, including prostaglandins, hydroxyeicosatrienoic acids (HETEs), and dihydroxyoctadecenoic acids. Oxylipins were the most significantly increasing metabolites (for 9-HETE: up to ∼41-fold, P = 3.7e-06) in day 42 supernatants. Measurements of arginine metabolism confirmed an increase in arginase activity at the expense of nitric oxide synthesis capacity in the bloodstream of recipients of day 42 blood, which correlated with measurements of hemodynamics. Metabolic changes in stored RBC supernatants impact the plasma metabolome of healthy transfusion recipients, with observed increases in plasticizers, as well as vasoactive, pro-oxidative, proinflammatory, and immunomodulatory metabolites after 42 days of storage.
Project description:Erythrocyte transfusion is the most common therapeutic procedure in hospitalized patients. Adding standard preservatives to red blood cells allows them to be stored for up to 42 days. However, whether storage has an effect on the erythrocyte transcriptome has not been well-studied. This study was designed to explore the change of key risk microRNA (miRNAs) in stored erythrocytes. We reanalyzed differentially expressed genes in the gene expression dataset GSE114990 and predicted their target genes, followed by experimental Gene Ontology (GO) analysis and (Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Furthermore, the PPI network of target genes was constructed by the STRING database, and the module analysis was carried out. We found two differential miRNAs, which were hsa-miR-1245a and hsa-miR-381. Enrichment analysis of GO and KEGG pathways confirmed that these target genes were significantly enriched in organ and system development, anchoring junction, transcription factor binding, and pathways of cancer. The results suggest that the miRNAs hsa-miR-381 and hsa-miR-1245a may serve as biomarkers for storage products of erythrocytes.
Project description:Recent experimental and clinical studies suggest a crucial role of mechanical splenic filtration in the host's defense against malaria parasites. Subtle changes in red blood cell (RBC) deformability, caused by infection or drug treatment, could influence the pathophysiological outcome. However, in vitro deformability measurements have not been directly linked in vivo with the splenic clearance of RBCs. In this study, mice infected with malaria-inducing Plasmodium yoelii revealed that chloroquine treatment could lead to significant alterations to RBC deformability and increase clearance of both infected and uninfected RBCs in vivo. These results have clear implications for the mechanism of human malarial anemia, a severe pathological condition affecting malaria patients.