Project description:ObjectivesTo investigate if sevoflurane based anesthesia is superior to propofol in preventing lung inflammation and preventing postoperative pulmonary complications.DesignRandomized controlled trial.SettingSingle tertiary care university hospital.ParticipantsForty adults undergoing cardiac surgery with cardiopulmonary bypass.InterventionsPatients were randomized in a 1:1 ratio to anesthetic maintenance with sevoflurane or propofol.Measurements and main resultsBlood and bronchoalveolar lavage fluid was sampled before and after bypass to measure pulmonary inflammation using a biomarker panel. The change in bronchoalveolar lavage concentration of tumor necrosis factor alpha (TNFα) was the primary outcome. Secondary outcomes included lung inflammation defined as changes in other biomarkers and postoperative pulmonary complications. There were no significant differences between groups in the change in bronchoalveolar lavage TNFα concentration (median [IQR] change, 17.24 [1.11-536.77] v 101.51 [1.47-402.84] pg/mL, sevoflurane v propofol, p = 0.31). There was a significantly lower postbypass concentration of plasma interleukin 8 (median [IQR], 53.92 [34.5-55.91] v 66.92 [53.03-94.44] pg/mL, p = 0.04) and a significantly smaller postbypass increase in the plasma receptor for advanced glycosylation end products (median [IQR], 174.59 [73.59-446.06] v 548.22 [193.15-852.39] pg/mL, p = 0.03) in the sevoflurane group compared with propofol. The incidence of postoperative pulmonary complications was 100% in both groups, with high rates of pleural effusion (17/18 [94.44%] v 19/22 [86.36%], p = 0.39) and hypoxemia (16/18 [88.88%] v 22/22 [100%], p = 0.11).ConclusionsSevoflurane anesthesia during cardiac surgery did not consistently prevent lung inflammation or prevent postoperative pulmonary complications compared to propofol. There were significantly lower levels of 2 plasma biomarkers specific for lung injury and inflammation in the sevoflurane group.
Project description:Side effects of mechanical ventilation, such as ventilator-induced diaphragmatic dysfunction (VIDD) and ventilator-induced lung injury (VILI), occur frequently in critically ill patients. Phrenic nerve stimulation (PNS) has been a valuable tool for diagnosing VIDD by assessing respiratory muscle strength in response to magnetic PNS. The detection of pathophysiologically reduced respiratory muscle strength is correlated with weaning failure, longer mechanical ventilation time, and mortality. Non-invasive electromagnetic PNS designed for diagnostic use is a reference technique that allows clinicians to measure transdiaphragm pressure as a surrogate parameter for diaphragm strength and functionality. This helps to identify diaphragm-related issues that may impact weaning readiness and respiratory support requirements, although lack of lung volume measurement poses a challenge to interpretation. In recent years, therapeutic PNS has been demonstrated as feasible and safe in lung-healthy and critically ill patients. Effects on critically ill patients' VIDD or diaphragm atrophy outcomes are the subject of ongoing research. The currently investigated application forms are diverse and vary from invasive to non-invasive and from electrical to (electro)magnetic PNS, with most data available for electrical stimulation. Increased inspiratory muscle strength and improved diaphragm activity (e.g., excursion, thickening fraction, and thickness) indicate the potential of the technique for beneficial effects on clinical outcomes as it has been successfully used in spinal cord injured patients. Concerning the potential for electrophrenic respiration, the data obtained with non-invasive electromagnetic PNS suggest that the induced diaphragmatic contractions result in airway pressure swings and tidal volumes remaining within the thresholds of lung-protective mechanical ventilation. PNS holds significant promise as a therapeutic intervention in the critical care setting, with potential applications for ameliorating VIDD and the ability for diaphragm training in a safe lung-protective spectrum, thereby possibly reducing the risk of VILI indirectly. Outcomes of such diaphragm training have not been sufficiently explored to date but offer the perspective for enhanced patient care and reducing weaning failure. Future research might focus on using PNS in combination with invasive and non-invasive assisted ventilation with automatic synchronisation and the modulation of PNS with spontaneous breathing efforts. Explorative approaches may investigate the feasibility of long-term electrophrenic ventilation as an alternative to positive pressure-based ventilation.
Project description:Acute lung injury (ALI) is characterised by severe pulmonary inflammation, alveolar-capillary barrier disruption, and pulmonary oedema. Therefore, establishing effective therapeutic targets for ALI prevention is crucial. The present study reports a novel function of RNF128 in regulating LPS-induced ALI. Severe lung damage and increased immune cell infiltration were detected in RNF128-deficient mice. In vitro experiments revealed that RNF128 inhibits neutrophil activation by binding to myeloperoxidase (MPO) and reducing its levels and activity. Moreover, RNF128 regulates alveolar macrophage activation and neutrophil infiltration by interacting with TLR4, targeting it for degradation, and inhibiting NF-κB activation, hence decreasing pro-inflammatory cytokines. Our results demonstrate for the first time that RNF128 is a negative regulator of MPO and TLR4 in neutrophils and alveolar macrophages, respectively. However, AAV9-mediated RNF128 overexpression alleviated lung tissue damage and reduced inflammatory cell infiltration. Thus, RNF128 is a promising therapeutic candidate for pharmacological interventions in ALI.
Project description:Lungs allografts have worse long-term survival compared with other organ transplants. This is most likely due to their unique immunoregulation that may not respond to traditional immunosuppression. For example, local NO generation by inducible NOS (iNOS) is critical for lung allograft acceptance but associates with rejection of other solid organs. The source of NO in accepting lung allografts remains unknown. Here, we report that, unlike the case for other pulmonary processes in which myeloid cells control NO generation, recipient-derived eosinophils play a critical and nonredundant role in iNOS-mediated lung allograft acceptance. Depletion of eosinophils reduces NO levels to that of recipients with global deletion of iNOS and leads to a costimulatory blockade-resistant form of rejection. Furthermore, NO production by eosinophils depends on Th1 polarization by inflammatory mediators, such as IFN-? and TNF-?. Neutralization of such mediators abrogates eosinophil suppressive capacity. Our data point to what we believe to be a unique and previously unrecognized role of eosinophil polarization in mediating allograft tolerance and put into perspective the use of high-dose eosinophil-ablating corticosteroids after lung transplantation.
Project description:OBJECTIVES:Observational studies suggest an association between vitamin D deficiency and adverse outcomes of critical illness and identify it as a potential risk factor for the development of lung injury. To determine whether preoperative administration of oral high-dose cholecalciferol ameliorates early acute lung injury postoperatively in adults undergoing elective esophagectomy. DESIGN:A double-blind, randomized, placebo-controlled trial. SETTING:Three large U.K. university hospitals. PATIENTS:Seventy-nine adult patients undergoing elective esophagectomy were randomized. INTERVENTIONS:A single oral preoperative (3-14 d) dose of 7.5?mg (300,000 IU; 15?mL) cholecalciferol or matched placebo. MEASUREMENTS AND MAIN RESULTS:Primary outcome was change in extravascular lung water index at the end of esophagectomy. Secondary outcomes included PaO2:FIO2 ratio, development of lung injury, ventilator and organ-failure free days, 28 and 90 day survival, safety of cholecalciferol supplementation, plasma vitamin D status (25(OH)D, 1,25(OH)2D, and vitamin D-binding protein), pulmonary vascular permeability index, and extravascular lung water index day 1 postoperatively. An exploratory study measured biomarkers of alveolar-capillary inflammation and injury. Forty patients were randomized to cholecalciferol and 39 to placebo. There was no significant change in extravascular lung water index at the end of the operation between treatment groups (placebo median 1.0 [interquartile range, 0.4-1.8] vs cholecalciferol median 0.4?mL/kg [interquartile range, 0.4-1.2?mL/kg]; p = 0.059). Median pulmonary vascular permeability index values were significantly lower in the cholecalciferol treatment group (placebo 0.4 [interquartile range, 0-0.7] vs cholecalciferol 0.1 [interquartile range, -0.15 to -0.35]; p = 0.027). Cholecalciferol treatment effectively increased 25(OH)D concentrations, but surgery resulted in a decrease in 25(OH)D concentrations at day 3 in both arms. There was no difference in clinical outcomes. CONCLUSIONS:High-dose preoperative treatment with oral cholecalciferol was effective at increasing 25(OH)D concentrations and reduced changes in postoperative pulmonary vascular permeability index, but not extravascular lung water index.
Project description:BACKGROUND AND PURPOSE:Acute lung injury (ALI) is a challenging clinical syndrome, which manifests as an acute inflammatory response. Myeloid differentiation protein 2 (MD2) has an important role in mediating LPS-induced inflammation. Currently, there are no effective molecular-based therapies for ALI or viable biomarkers for predicting the severity of disease. Recent preclinical studies have shown that shikonin, a natural naphthoquinone, prevents LPS-induced inflammation. However, little is known about the underlying mechanisms. EXPERIMENTAL APPROACH:The binding affinity of shikonin to MD2 was analysed using computer docking, surface plasmon resonance analysis and elisa. In vitro, the anti-inflammatory effect and mechanism of shikonin were investigated through elisa, real-time quantitative reverse transcription PCR, Western blotting and immunoprecipitation assay. In vivo, lung injury was induced by intratracheal administration of LPS and assessed by changes in the histopathological and inflammatory markers. The underlying mechanisms were investigated by immunoprecipitation in lung tissue. KEY RESULTS:Shikonin directly bound to MD2 and interfered with the activation of toll-like receptor 4 (TLR4) induced by LPS. In cultured macrophages, shikonin inhibited TLR4 signalling and pro-inflammatory cytokine production. These effects were produced through suppression of key signalling proteins including the NF-?B and the MAPK pathway. We also showed that shikonin inhibits MD2-TLR4 complex formation and reduces LPS-induced inflammatory responses in a mouse model of ALI. CONCLUSIONS AND IMPLICATIONS:Our studies have uncovered the mechanism underlying the biological activity of shikonin in ALI and suggest that the targeting of MD2 may prove to be beneficial as a treatment option for this condition.
Project description:Acute inflammatory exacerbations (AIEs) represent immune-driven deteriorations of many chronic lung conditions, including COPD, asthma, and pulmonary fibrosis (PF). The first line of therapy is represented by broad-spectrum immunomodulation. Among the several inflammatory populations mobilizing during AIEs, eosinophils have been identified as promising indicators of an active inflammatory exacerbation. To better study the eosinophil-parenchymal crosstalk during AIE-PF, this work leverages a clinically relevant model of inflammatory exacerbations triggered by inducible expression of a mutation in the alveolar epithelial type 2 cell Surfactant Protein-C gene [SP-CI73T]. Unbiased single-cell sequencing analysis of controls and SP-CI73T mutants at a time coordinated with peak eosinophilia (14 days) defined heightened inflammatory activation, chemotaxis, and survival signaling (IL-6, IL-4/13, STAT3, Glucocorticoid Receptor, mTOR, and MYC) in eosinophils. To study the impact of eosinophils in inflammatory exacerbations, the SP-CI73T line was crossed with eosinophil lineage deficient mice (GATA1Δdbl) to produce the SP-CI73TGATA1KO line. Time course analysis (7-42 days) demonstrated improved lung histology, survival, and reduced inflammation in SP-CI73TGATA1KO cohorts. Spectral flow cytometry of tissue digests confirmed eosinophil depletion in GATA1KO mice and the absence of a compensatory shift in neutrophils and immature monocyte recruitment. Eosinophil deletion resulted in progressive monocyte-derived macrophage accumulation (14 days post-injury), combined with declines in CD3+CD4+ lymphocyte and B220+ B cell abundance. Histochemical analysis revealed atypical inflammatory cell activation in SP-CI73TGATA1KO mice, with reduced numbers of Arg-1+ and iNOS+ cells, but increases in tgfb1 mRNA expression in bronchoalveolar lavage cells and tissue. Dexamethasone treatment (1 mg/kg daily, i.p.) was utilized to investigate corticosteroid efficacy in highly eosinophilic exacerbations induced by mutant SP-CI73T. Dexamethasone successfully reduced total and eosinophil (CD11b+SigF+CD11c-) counts at 14 days and was linked to reduced evidence of structural damage and perivascular infiltrate. Together, these results illustrate the deleterious role of eosinophils in inflammatory events preceding lung fibrosis and demonstrate the efficacy of corticosteroid treatment in highly eosinophilic exacerbations induced by mutant SP-CI73T.
Project description:Increases in eosinophil numbers are associated with infection and allergic diseases, including asthma, but there is also evidence that eosinophils contribute to homeostatic immune processes. In mice, the normal lung contains resident eosinophils (rEos), but their function has not been characterized. Here, we have reported that steady-state pulmonary rEos are IL-5-independent parenchymal Siglec-FintCD62L+CD101lo cells with a ring-shaped nucleus. During house dust mite-induced airway allergy, rEos features remained unchanged, and rEos were accompanied by recruited inflammatory eosinophils (iEos), which were defined as IL-5-dependent peribronchial Siglec-FhiCD62L-CD101hi cells with a segmented nucleus. Gene expression analyses revealed a more regulatory profile for rEos than for iEos, and correspondingly, mice lacking lung rEos showed an increase in Th2 cell responses to inhaled allergens. Such elevation of Th2 responses was linked to the ability of rEos, but not iEos, to inhibit the maturation, and therefore the pro-Th2 function, of allergen-loaded DCs. Finally, we determined that the parenchymal rEos found in nonasthmatic human lungs (Siglec-8+CD62L+IL-3Rlo cells) were phenotypically distinct from the iEos isolated from the sputa of eosinophilic asthmatic patients (Siglec-8+CD62LloIL-3Rhi cells), suggesting that our findings in mice are relevant to humans. In conclusion, our data define lung rEos as a distinct eosinophil subset with key homeostatic functions.
Project description:Despite the accepted notion that granulocytes play a universally destructive role in organ and tissue grafts, it has been recently described that eosinophils can facilitate immunosuppression-mediated acceptance of murine lung allografts. The mechanism of eosinophil-mediated tolerance, or their role in regulating alloimmune responses in the absence of immunosuppression, remains unknown. Using lung transplants in a fully MHC-mismatched BALB/c (H2d) to C57BL/6 (H2b) strain combination, we demonstrate that eosinophils downregulate T cell-mediated immune responses and play a tolerogenic role even in the absence of immunosuppression. We further show that such downregulation depends on PD-L1/PD-1-mediated synapse formation between eosinophils and T cells. We also demonstrate that eosinophils suppress T lymphocyte responses through the inhibition of T cell receptor/CD3 (TCR/CD3) subunit association and signal transduction in an inducible NOS-dependent manner. Increasing local eosinophil concentration, through administration of intratracheal eotaxin and IL-5, can ameliorate alloimmune responses in the lung allograft. Thus, our data indicate that eosinophil mobilization may be utilized as a novel means of lung allograft-specific immunosuppression.
Project description:Momordicoside G is a bioactive component from Momordica charantia, this study explores the contributions of macrophages to the effects of momordicoside G on lung injury and carcinoma lesion. In vitro, when administered at the dose that has no effect on cell viability in M2-like macrophages, momordicoside G decreased ROS and promoted autophagy and thus induced apoptosis in M1-like macrophages with the morphological changes. In the urethane-induced lung carcinogenic model, prior to lung carcinoma lesions, urethane induced obvious lung injury accompanied by the increased macrophage infiltration. The lung carcinoma lesions were positively correlated with lung tissue injury and macrophage infiltration in alveolar cavities in the control group, these macrophages showed mainly a M1-like (iNOS+/CD68+) phenotype. ELISA showed that the levels of IL-6 and IL-12 were increased and the levels of IL-10 and TGF-β1 were reduced in the control group. After momordicoside G treatment, lung tissue injury and carcinoma lesions were ameliorated with the decreased M1-like macrophages and the increased M2-like (arginase+/CD68+) macrophages, whereas macrophage depletion by liposome-encapsulated clodronate (LEC) decreased significantly lung tissue injury and carcinoma lesions and also attenuated the protective efficacy of momordicoside G. The M2 macrophage dependent efficacy of momordicoside G was confirmed in a LPS-induced lung injury model in which epithelial closure was promoted by the transfer of M2-like macrophages and delayed by the transfer of M1-like macrophages. To acquire further insight into the underlying molecular mechanisms by which momordicoside G regulates M1 macrophages, we conduct a comprehensive bioinformatics analysis of momordicoside G relevant targets and pathways involved in M1 macrophage phenotype. This study suggests a function of momordicoside G, whereby it selectively suppresses M1 macrophages to stimulate M2-associated lung injury repair and prevent inflammation-associated lung carcinoma lesions.