The spatial network of skeletal proteins in a stony coral.
Ontology highlight
ABSTRACT: Coral skeletons are materials composed of inorganic aragonitic fibres and organic molecules including proteins, sugars and lipids that are highly organized to form a solid biomaterial upon which the animals live. The skeleton contains tens of proteins, all of which are encoded in the animal genome and secreted during the biomineralization process. While recent advances are revealing the functions and evolutionary history of some of these proteins, how they are spatially arranged in the skeleton is unknown. Using a combination of chemical cross-linking and high-resolution tandem mass spectrometry, we identify, for the first time, the spatial interactions of the proteins embedded within the skeleton of the stony coral Stylophora pistillata. Our subsequent network analysis revealed that several coral acid-rich proteins are invariably associated with carbonic anhydrase(s), alpha-collagen, cadherins and other calcium-binding proteins. These spatial arrangements clearly show that protein-protein interactions in coral skeletons are highly coordinated and are key to understanding the formation and persistence of coral skeletons through time.
SUBMITTER: Mummadisetti MP
PROVIDER: S-EPMC8086859 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA