Project description:PurposeMolecular profiling has been used to select patients for targeted therapy and determine prognosis. Noninvasive strategies are critical to hepatocellular carcinoma (HCC) given the challenge of obtaining liver tissue biopsies.Experimental designWe analyzed blood samples from 206 patients with HCC using comprehensive genomic testing (Guardant Health) of circulating tumor DNA (ctDNA).ResultsA total of 153/206 (74.3%) were men; median age, 62 years (range, 18-91 years). A total of 181/206 patients had ≥1 alteration. The total number of alterations was 680 (nonunique); median number of alterations/patient was three (range, 1-13); median mutant allele frequency (% cfDNA), 0.49% (range, 0.06%-55.03%). TP53 was the common altered gene [>120 alterations (non-unique)] followed by EGFR, MET, ARID1A, MYC, NF1, BRAF, and ERBB2 [20-38 alterations (nonunique)/gene]. Of the patients with alterations, 56.9% (103/181) had ≥1 actionable alterations, most commonly in MYC, EGFR, ERBB2, BRAF, CCNE1, MET, PIK3CA, ARID1A, CDK6, and KRAS. In these genes, amplifications occurred more frequently than mutations. Hepatitis B (HBV)-positive patients were more likely to have ERBB2 alterations, 35.7% (5/14) versus 8.8% HBV-negative (P = 0.04).ConclusionsThis study represents the first large-scale analysis of blood-derived ctDNA in HCC in United States. The genomic distinction based on HCC risk factors and the high percentage of potentially actionable genomic alterations suggests potential clinical utility for this technology.
Project description:Despite advances in DNA methylome analyses of cells and tissues, current techniques for genome-scale profiling of DNA methylation in circulating cell-free DNA (ccfDNA) remain limited. Here we describe a methylated CpG tandems amplification and sequencing (MCTA-Seq) method that can detect thousands of hypermethylated CpG islands simultaneously in ccfDNA. This highly sensitive technique can work with genomic DNA as little as 7.5 pg, which is equivalent to 2.5 copies of the haploid genome. We have analyzed a cohort of tissue and plasma samples (n = 151) of hepatocellular carcinoma (HCC) patients and control subjects, identifying dozens of high-performance markers in blood for detecting small HCC (? 3 cm). Among these markers, 4 (RGS10, ST8SIA6, RUNX2 and VIM) are mostly specific for cancer detection, while the other 15, classified as a novel set, are already hypermethylated in the normal liver tissues. Two corresponding classifiers have been established, combination of which achieves a sensitivity of 94% with a specificity of 89% for the plasma samples from HCC patients (n = 36) and control subjects including cirrhosis patients (n = 17) and normal individuals (n = 38). Notably, all 15 alpha-fetoprotein-negative HCC patients were successfully identified. Comparison between matched plasma and tissue samples indicates that both the cancer and noncancerous tissues contribute to elevation of the methylation markers in plasma. MCTA-Seq will facilitate the development of ccfDNA methylation biomarkers and contribute to the improvement of cancer detection in a clinical setting.
Project description:A serum miRNA combination could be a powerful classifier for the detection of hepatocellular carcinoma. Keywords: Non-coding RNA profiling by array
Project description:Background and aimsComputed tomography (CT) provides scans of the human body from which digitized features can be extracted. The aim of this study was to examine the role of these digital biomarkers for predicting subsequent occurrence of hepatocellular carcinoma (HCC) in cirrhotic patients.MethodsA cohort of 269 patients with cirrhosis were recruited and prospectively followed for the occurrence of HCC in Taiwan. CT scans were retrospectively retrieved and computationally processed using analytic morphomics. A predictive score was constructed using Cox regression and the generalized iterative modeling method, maximizing the log likelihood of the time to HCC development. An independent cohort of 274 patients from University of Michigan was utilized to examine the predictive validity of this score in a Western population.ResultsOf the 27 digitized features at the 12th thoracic vertebral level, six features were significantly associated with HCC occurrence. Two digitized features (fascia eccentricity and the bone mineral density) were able to stratify patients into high- and low-risk groups with distinct cumulative incidence of HCC in both the training and validation cohorts (P = 0.015 and 0.044, respectively). When the two digitized features were tested in the Michigan cohort, only bone mineral density remained an effective predictor.ConclusionDigitized features derived from the CT were effective in predicting subsequent occurrence of HCC in cirrhosis patients. The bone mineral density measured on CT was an effective predictor for patients in both Taiwan and USA.
Project description:Transarterial chemoembolization (TACE) is the most commonly used treatment for advanced hepatocellular carcinoma (HCC), but still lacks accurate real-time biomarkers for monitoring its therapeutic efficacy. Here, we explored whether copy number profiling of circulating free DNA (cfDNA) could be utilized to predict responses and prognosis in HCC patients with TACE treatment. In total, 266 plasma cfDNA samples were collected from 64 HCC patients, 57 liver cirrhosis (LC) patients and 32 healthy volunteers. We performed low-depth whole-genome sequencing (LD-WGS) on cfDNA samples to conduct copy number variant (CNV) analysis and tumour fraction (TFx) quantification. Then, the correlation between TFx/CNVs and therapeutic efficacy, treatment outcomes and lipiodol deposition were explored. The change in TFx during TACE treatment was associated with patients' tumour burden, and could accurately and earlier predict treatment response and prognosis, providing an alternative strategy other than mRECIST. Meanwhile, the chromosomal 16q/NQO1 amplification indicated worse therapeutic response; in patients who underwent multiple TACE sessions, TFx change during their first TACE treatment reflected the long-term survival; additionally, the copy number amplification of chromosome 1q, 3p, 6p, 8q, 10p, 12q, 18p or 18q affected lipiodol deposition. Overall, we have provided a new liquid biopsy approach for future TACE management of HCC patients.
Project description:Pancreatic cancer is often detected late, when curative therapies are no longer possible. Here, we present non-invasive detection of pancreatic ductal adenocarcinoma (PDAC) by 5-hydroxymethylcytosine (5hmC) changes in circulating cell free DNA from a PDAC cohort (n = 64) in comparison with a non-cancer cohort (n = 243). Differential hydroxymethylation is found in thousands of genes, most significantly in genes related to pancreas development or function (GATA4, GATA6, PROX1, ONECUT1, MEIS2), and cancer pathogenesis (YAP1, TEAD1, PROX1, IGF1). cfDNA hydroxymethylome in PDAC cohort is differentially enriched for genes that are commonly de-regulated in PDAC tumors upon activation of KRAS and inactivation of TP53. Regularized regression models built using 5hmC densities in genes perform with AUC of 0.92 (discovery dataset, n = 79) and 0.92-0.94 (two independent test sets, n = 228). Furthermore, tissue-derived 5hmC features can be used to classify PDAC cfDNA (AUC = 0.88). These findings suggest that 5hmC changes enable classification of PDAC even during early stage disease.
Project description:Regular hepatocellular carcinoma (HCC) surveillance by ultrasonography in combination with the α-fetoprotein (AFP) examination is unsatisfactory in diagnostic sensitivity for early-stage HCC especially in cirrhotic patients. We conducted a prospective study in a tertiary medical center in Taiwan and consecutively collected serum samples from patients with chronic hepatitis, liver cirrhosis (LC), or HCC for new biomarker discovery. Overall, 166 patients were enrolled, including 40 hepatitis, 30 LC, and 96 HCC. Four acute-phase serum amyloid A (A-SAA) derived biomarkers including total A-SAA, A-SAA monomer and oligomer, and protein misfolding cyclic amplification (PMCA) signal were measured and compared between patients with and without HCC. A-SAA biomarkers significantly increased in the HCC group when compared to the hepatitis and LC groups, and generally increased in more advanced tumor stages. Among A-SAA biomarkers, the area under the receiver operator characteristic curves (AUROCs) for PMCA signal in discrimination of all-stage and early-stage HCC were 0.86 and 0.9 in cirrhotic patients, which is comparable to AFP. For cirrhotic patients with low AFP (< 7 ng/mL), PMCA signal maintained good capacity in prediction of early-stage HCC (AUROC: 0.94). Serum A-SAA and its prion-like property showed a potential to complement AFP in detection of early-stage HCC.
Project description:Pancreatic cancers are typically diagnosed at late stage where disease prognosis is poor as exemplified by a 5-year survival rate of 10%. Earlier diagnosis would be beneficial by enabling surgical resection or earlier application of therapeutic regimens. We investigated non-invasive detection of pancreatic ductal adenocarcinoma (PDAC) by interrogating changes in 5-hydroxymethylation cytosines (5hmC) of circulating cell free DNA in the plasma of a PDAC cohort (n=64) in comparison with a non-cancer cohort (n=243). 5hmC density is reduced in promoters and enhancers, whereas it is increased over 3’UTR, intron and TTS regions in PDAC compared to non-cancer cfDNA. Differential hydromethylation is rampant and found in thousands of genes. Stringent filtering by significance reveals genes related to pancreas function or development (GATA4, GATA6, PROX1, ONECUT1, MEIS2), and/or cancer pathogenesis (YAP1, TEAD1, PROX1, ONECUT1, ONECUT2 and IGF1). Furthermore, we observe enrichment for genes that are de-regulated upon activation of KRAS and inactivation of TP53, both of which are commonly observed in PDAC tumors. Regularized regression models, built using 5hmC densities in genes with the most variable 5hmC counts, performed with AUC of 0.92 on discovery dataset and 0.92-0.94 on two independent test sets. Furthermore, investigation of 5hmC occupancy in PDAC tumor tissue revealed that tissue-derived features can be used to accurately classify PDAC cfDNA (AUC=0.88). These findings suggest that 5hmC changes, at least partially derived from tumor tissue, enable classification of PDAC patients with high fidelity and are worth further investigation on larger cohorts of patient samples.
Project description:Circulating tumor DNA (ctDNA) carries genetic information consistent with tumor cells and has potential value for molecular diagnosis of tumors. The present study analysed the gene mutations of plasma circulating cell-free DNA (cfDNA) and tumor tissue DNA in hepatocellular carcinoma (HCC) patients and explored the clinical application value of plasma cfDNA as a tumor marker in HCC molecular diagnosis. Samples from 29 patients with primary HCC were collected. Hotspot mutations in 50 tumor-associated genes were analysed using amplicon sequencing technology and gene loci with a mutant allele frequency (MAF) >1% were analysed. 35 mutant genes in total were detected by deep sequencing method of which the genes with maximum mutation frequencies were TP53, ATM, and ALK. In addition, a total of 21 patients were found to have a consistent gene mutation in plasma cfDNA and tumor tissue DNA and 17 cases had consistent gene mutations in the paracancerous tissue and tumor tissue DNA. Further analysis showed that the MAFs in the TP53, CTNNB1, PIK3CA, and CDKN2A genes were higher in patients with tumor diameters >5 cm than those with tumor diameters <5 cm. And the MAFs in the TP53, RET, FGFR3 and APC genes were significantly higher in patients with multiple tumors or with metastasis than in single tumor patients. In conclusion, amplicon sequencing technology is highly sensitive for the detection of mutant genes in the plasma cfDNA of HCC patients. Plasma cfDNA might be an effective molecular marker for HCC molecular diagnosis.
Project description:Pyruvate kinase M2 (PKM2), a key protein in glucose and lipid metabolism, has been reported to be related to carcinogenesis in various malignancies. However, its roles in hepatocellular carcinoma with cirrhotic liver (CL) and hepatocellular carcinoma with non-cirrhoticliver (NCL) haves not been investigated. In our study western bloting, qRT-PCR and immunohistochemistry were performed to evaluate the clinical significance of PKM2 protein expression in CL and NCL. The results revealed that PKM2 protein expression was significantly higher in HCC tissues than in their adjacent non-tumour tissues. The high expression rates of PKM2 were more frequently noted in CL (45. 6%) than in NCL (31. 9%) tissues. High PKM2 expression in CL and NCL tissues was significantly associated with vascular invasion (P?=?0.002 and P?=?0.004, respectively) and intrahepatic metastasis (P?<?0.001 and P?=?0.019, respectively). Importantly, Kaplan-Meier survival analysis showed that the disease-specific survival (DSS) and recurrence-free survival (RFS) were lower in CL with high PKM2 expression than in NCL with high PKM2 expression (P?=?0.003 and P?=?0.003, respectively). Overall, high PKM2 expression was more frequently found in CL than in NCL, and PKM2 overexpression was associated with poor survival rates in patients with CL and NCL.