Project description:BackgroundsCandida glabrata is a frequently isolated non-albicans Candida species and invasive C. glabrata infections in older patients are associated with high mortality rates. Opportunistic Candida infections in critically ill patients may be either endogenous or nosocomial in origin and this distinction is critical for effective intervention strategies. This study performed multi-locus sequence typing (MLST) to study genotypic relatedness among clinical C. glabrata isolates in Kuwait.MethodsCandida glabrata isolates (n = 91) cultured from 91 patients were analyzed by MLST. Repeat isolates (n = 16) from 9 patients were also used. Antifungal susceptibility testing for fluconazole, voriconazole, caspofungin and amphotericin B (AMB) was determined by Etest. Genetic relatedness was determined by constructing phylogenetic tree and minimum spanning tree by using BioNumerics software.ResultsResistance to fluconazole, voriconazole and AMB was detected in 7, 2 and 10 C. glabrata isolates, respectively. MLST identified 28 sequence types (STs), including 12 new STs. ST46 (n = 33), ST3 (n = 8), ST7 (n = 6) and ST55 (n = 6) were prevalent in ≥4 hospitals. Repeat isolates obtained from same or different site yielded identical ST. No association of ST46 with source of isolation or resistance to antifungals was apparent. Microevolution and cross-transmission of infection was indicated in two hospitals that yielded majority (57 of 91, 67%) of C. glabrata.ConclusionOur data suggest that C. glabrata undergoes microevolution in hospital environment and can be nosocomially transmitted to other susceptible patients. Thus, proper infection control practices during routine procedures on C. glabrata-infected patients may prevent transmission of this pathogen to other hospitalized patients.
Project description:The opportunistic yeast Candida glabratais increasingly refractory to antifungal treatment or prophylaxis and relatedly is increasingly implicated in health care-associated infections. To elucidate the epidemiology of these infections, strain typing is required. Sequence-based typing provides multiple advantages over length-based methods, such as pulsed-field gel electrophoresis (PFGE); however, conventional multilocus sequence typing (targeting 6 conserved loci) and whole-genome sequencing are impractical for routine use. A commercial sequence-based typing service for C. glabratathat targets polymorphic tandem repeat-containing loci has recently been developed. These CgMT-J and CgMT-M services were evaluated with 56 epidemiologically unrelated isolates, 4 to 7 fluconazole-susceptible or fluconazole-resistant isolates from each of 5 center A patients, 5 matched pairs of fluconazole-susceptible/resistant isolates from center B patients, and 7 isolates from a center C patient who responded to then failed caspofungin therapy. CgMT-J and CgMT-M generated congruent results, resolving isolates into 24 and 20 alleles, respectively. Isolates from all but one of the center A patients shared the same otherwise rare alleles, suggesting nosocomial transmission. Unexpectedly, Pdr1 sequencing showed that resistance arose independently in each patient. Similarly, most isolates from center B also clustered together; however, this may reflect a dominant clone since their alleles were shared by multiple unrelated isolates. Although distinguishable by their echinocandin susceptibilities, all isolates from the center C patient shared alleles, in agreement with the previously reported relatedness of these isolates based on PFGE. Finally, we show how phylogenetic clusters can be used to provide surrogate parents to analyze the mutational basis for antifungal resistance.
Project description:The most widely used DNA-based method for bacterial strain typing, multi-locus sequence typing (MLST), lacks sufficient resolution to distinguish among many bacterial strains within a species. Here, we show that strain typing based on the presence or absence of distributed genes is able to resolve all completely sequenced genomes of six bacterial species. This was accomplished by the development of a clustering method, neighbour grouping, which is completely consistent with the lower-resolution MLST method, but provides far greater resolving power. Because the presence/absence of distributed genes can be determined by low-cost microarray analyses, it offers a practical, high-resolution alternative to MLST that could provide valuable diagnostic and prognostic information for pathogenic bacterial species.
Project description:The haploid pathogenic yeast Candida glabrata is the second most common Candida species isolated from cases of bloodstream infection. The clinical relevance of C. glabrata is enhanced by its reduced susceptibility to fluconazole. Despite this, little is known of the epidemiology or population structure of this species. We developed a multilocus sequence typing (MLST) scheme for C. glabrata and used it to fingerprint a geographically diverse collection of 107 clinical isolates and 2 reference strains. Appropriate loci were identified by amplifying and sequencing fragments of the coding regions of 11 C. glabrata genes in 10 unrelated isolates. The 6 most variable loci (FKS, LEU2, NMT1, TRP1, UGP1, and URA3) were sequenced in the collection of 109 isolates. From the 3,345 bp sequenced in each isolate, 81 nucleotide sites were found to be variable. These defined 30 STs among the 109 strains. The technique was validated by comparison with random amplified polymorphic DNA and the complex DNA fingerprinting probes Cg6 and Cg12. MLST identified 5 major clades among the isolates studied. Three of the clades exhibited significant geographical bias. Our data demonstrate for the first time, with such a large geographically diverse strain collection, that distinct genetic clades of C. glabrata prevail in different geographical regions.
Project description:A multiple-locus variable-number tandem-repeat analysis (MLVA) using six microsatellite markers was assessed in 127 Candida glabrata isolates. Thirty-seven different genotypes, stable both in vitro and in vivo, were observed. The highest discriminatory power (D = 0.902) was reached by using only four markers. MLVA seems to be relevant for C. glabrata typing.
Project description:Candida glabrata is one of the most important causes of nosocomial fungal infection. We investigated, using a multiplex PCR, three polymorphic microsatellite markers, RPM2, MTI, and ERG3, in order to obtain a rapid genotyping method for C. glabrata. One set of primers was designed for each locus, and one primer of each set was dye labeled to read PCR signals using an automatic sequencer. Eight reference strains including other Candida species and 138 independent C. glabrata clinical isolates were tested. The clinical isolates were collected from different anatomical sites of adult patients either hospitalized in different wards of two different hospitals or not hospitalized. Since C. glabrata is haploid, one single PCR product for each PCR set was obtained and assigned to an allele. The numbers of different alleles were 5, 7, and 15 for the RPM2, MTI, and ERG3 loci, respectively. The number of allelic associations was 21, leading to a discriminatory power of 0.84. The markers were stable after 25 subcultures, and the amplifications were specific for C. glabrata. A factorial correspondence analysis did not indicate any correlation between the 21 multilocus genotypes and the clinical data (source, sex, ward, anatomical sites). Microsatellite marker analysis is a rapid and reliable technique to investigate clinical issues concerning C. glabrata. However, its discriminatory power should be improved by testing other polymorphic microsatellite loci.
Project description:Whole-genome sequences of Candida auris isolates from nosocomial and nonnosocomial infections were compared. The average numbers of single nucleotide variations were different between the two groups. The small amount of genetic variability between intra- or interhost isolates suggests recovery of all colonizing or infecting genomes for comparison is required for outbreaks.
Project description:Human-to-human-transmitted Corynebacterium diphtheriae was historically the main pathogen causing diphtheria and has therefore been studied extensively in the past. More recently, diphtheria caused by toxigenic Corynebacterium ulcerans is an emerging disease in several industrial countries, including the United Kingdom, the United States, France, and Germany. However, toxigenic C. ulcerans has so far been almost neglected in the development of epidemiologic tools. One of the most important tools in modern epidemiology to understand transmission pathways is sequence typing of pathogens. Here, we provide a protocol for multilocus sequence typing (MLST) to type C. ulcerans strains rapidly and relatively cost-effectively. Applying MLST to C. ulcerans for the first time, we show that related sequence types (STs) might be associated with the presence of the diphtheria toxin gene, which encodes diphtheria toxin (DT), the most important diphtheria-causing virulence factor. Interestingly, we found only two very closely related STs in the isolates derived from six dogs. Additionally, our data show that all STs derived from animals which were at least twice present in our analysis were found in humans as well. This finding is congruent with zoonotic transmission of C. ulcerans.
Project description:Candida glabrata is a common cause of Candida infections. In our present study, we investigated the antifungal susceptibility and molecular epidemiology of vaginal and non-vaginal C. glabrata isolates. Seventy-six vaginal C. glabrata strains isolated from patients with vulvovaginal candidiasis and 57 non-vaginal C. glabrata isolates were collected at two hospitals in Shanghai, China. Antifungal susceptibility was examined using a broth microdilution method. Multilocus sequence typing was used for genotyping. Overall, 28 (21.1%), 28 (21.1%), and 29 (21.8%) C. glabrata isolates were resistant to fluconazole, itraconazole, and voriconazole, respectively. Briefly, 18 (23.7%), 18 (23.7%), and 19 (25%) vaginal strains were resistant to fluconazole, itraconazole, and voriconazole. While the resistance to these antifungals were all 17.5% (10/57) in non-vaginal strains. All isolates retained susceptibility to amphotericin B, and only four non-vaginal isolates were caspofungin resistant. Genotyping identified 17 ST patterns. In non-vaginal samples, the same genotypes appear as in the vaginal samples, except for one genotype (ST-182), while in the vaginal samples more genotypes appear (ST8, ST19, ST45, ST55, ST66, ST80, ST138, and ST17). The most common genotype was ST7 (81 strains), followed by ST10 (14 strains) and ST15 (11 strains). The majority of resistant phenotype strains (25/30, 83.3%) correlated to the predominant genotype (ST7), and the rest belonged to ST3 (2/30, 6.7%), ST10 (1/30, 3.3%), ST19 (1/30, 3.3%), and ST45 (1/30, 3.3%). Our survey revealed cross-resistance in vaginal and non-vaginal C. glabrata isolates. Moreover, there is no genotype associated with the resistance phenotype.