Project description:To identify genetic variants associated with refractive astigmatism in the general population, meta-analyses of genome-wide association studies were performed for: White Europeans aged at least 25 years (20 cohorts, N = 31,968); Asian subjects aged at least 25 years (7 cohorts, N = 9,295); White Europeans aged <25 years (4 cohorts, N = 5,640); and all independent individuals from the above three samples combined with a sample of Chinese subjects aged <25 years (N = 45,931). Participants were classified as cases with refractive astigmatism if the average cylinder power in their two eyes was at least 1.00 diopter and as controls otherwise. Genome-wide association analysis was carried out for each cohort separately using logistic regression. Meta-analysis was conducted using a fixed effects model. In the older European group the most strongly associated marker was downstream of the neurexin-1 (NRXN1) gene (rs1401327, P = 3.92E-8). No other region reached genome-wide significance, and association signals were lower for the younger European group and Asian group. In the meta-analysis of all cohorts, no marker reached genome-wide significance: The most strongly associated regions were, NRXN1 (rs1401327, P = 2.93E-07), TOX (rs7823467, P = 3.47E-07) and LINC00340 (rs12212674, P = 1.49E-06). For 34 markers identified in prior GWAS for spherical equivalent refractive error, the beta coefficients for genotype versus spherical equivalent, and genotype versus refractive astigmatism, were highly correlated (r = -0.59, P = 2.10E-04). This work revealed no consistent or strong genetic signals for refractive astigmatism; however, the TOX gene region previously identified in GWAS for spherical equivalent refractive error was the second most strongly associated region. Analysis of additional markers provided evidence supporting widespread genetic co-susceptibility for spherical and astigmatic refractive errors.
Project description:The distribution of human refractive errors displays features that are not commonly seen in other biological variables. Compared with the more typical Gaussian distribution, adult refraction within a population typically has a negative skew and increased kurtosis (ie is leptokurtotic). This distribution arises from two apparently conflicting tendencies, first, the existence of a mechanism to control eye growth during infancy so as to bring refraction towards emmetropia/low hyperopia (ie emmetropisation) and second, the tendency of many human populations to develop myopia during later childhood and into adulthood. The distribution of refraction therefore changes significantly with age. Analysis of the processes involved in shaping refractive development allows for the creation of a life course model of refractive development. Monte Carlo simulations based on such a model can recreate the variation of refractive distributions seen from birth to adulthood and the impact of increasing myopia prevalence on refractive error distributions in Asia.
Project description:BACKGROUND:Research reproducibility is vital for translation of epidemiologic findings. However, repeated studies of the same question may be undertaken without enhancing existing knowledge. To identify settings in which additional research is or is not warranted, we adapted research synthesis metrics to determine number of additional observational studies needed to change the inference from an existing meta-analysis. METHODS:The fail-safe number (FSN) estimates number of additional studies of average weight and null effect needed to drive a statistically significant meta-analysis to null (P ? 0.05). We used conditional power to determine number of additional studies of average weight and equivalent heterogeneity to achieve 80% power in an updated meta-analysis to detect the observed summary estimate as statistically significant. We applied these metrics to a curated set of 98 meta-analyses on biomarkers and cancer risk. RESULTS:Both metrics were influenced by number of studies, heterogeneity, and summary estimate size in the existing meta-analysis. For the meta-analysis on Helicobacter pylori and gastric cancer with 15 studies [OR = 2.29; 95% confidence interval (CI), 1.71-3.05], FSN was 805 studies, supporting futility of further study. For the meta-analysis on dehydroepiandrosterone sulfate and prostate cancer with 7 studies (OR = 1.29; 95% CI, 0.99-1.69), 5 more studies would be needed for 80% power, suggesting further study could change inferences. CONCLUSIONS:Along with traditional assessments, these metrics could be used by stakeholders to decide whether additional studies addressing the same question are needed. IMPACT:Systematic application of these metrics could lead to more judicious use of resources and acceleration from discovery to population-health impact.
Project description:Proteins in milk have been studied for decades and proteomics, peptidomics, and glycoproteomics are the main approaches previously deployed to decipher the proteome of human milk. In the present work, we aimed at implementing a highly automated pipeline for the proteomic analysis of human milk with liquid chromatography (LC) mass spectrometry (MS). Commercial human milk samples were used to evaluate and optimize workflows.
Project description:Chromatic pupillometry is an emerging modality in the assessment of retinal and optic nerve disorders. Herein, we evaluate the effect of low and moderate refractive errors on pupillary responses to blue- and red-light stimuli in a healthy older population. This study included 139 participants (≥50 years) grouped by refractive error: moderate myopes (>-6.0D and ≤-3.0D, n = 24), low myopes (>-3.0D and <-0.5D, n = 30), emmetropes (≥-0.5D and ≤0.5D, n = 31) and hyperopes (>0.5D and <6.0D, n = 54). Participants were exposed to logarithmically ramping-up blue (462 nm) and red (638 nm) light stimuli, designed to sequentially activate rods, cones and intrinsically-photosensitive retinal ganglion cells. Pupil size was assessed monocularly using infra-red pupillography. Baseline pupil diameter correlated inversely with spherical equivalent (R = -0.26, P < 0.01), and positively with axial length (R = 0.37, P < 0.01) and anterior chamber depth (R = 0.43, P < 0.01). Baseline-adjusted pupillary constriction amplitudes to blue light did not differ between groups (P = 0.45), while constriction amplitudes to red light were greater in hyperopes compared to emmetropes (P = 0.04) at moderate to bright light intensities (12.25-14.0 Log photons/cm²/s). Our results demonstrate that low and moderate myopia do not alter pupillary responses to ramping-up blue- and red-light stimuli in healthy older individuals. Conversely, pupillary responses to red light should be interpreted cautiously in hyperopic eyes.
Project description:In eyes with a preoperative plano refractive cylinder, it would appear that there is no rationale for astigmatic treatment. The aim of this retrospective, cross-sectional data analysis was to determine the amount of topographic astigmatism in refractive plano eyes that results in reduced efficacy after myopic laser in situ keratomileusis (LASIK).This study included 267 eyes from 267 consecutive myopic patients with a refractive plano cylinder. Receiver operating characteristic analysis was used to find the cut-off values of preoperative ocular residual astigmatism (= topographic astigmatism) that can best discriminate between groups of efficacy and safety indices in preoperative plano refractive cylinder eyes.Preoperative ocular residual astigmatism (ORA) (or topographic astigmatism) of ≤0.9 diopters (D) resulted in an efficacy index of at least 0.8 statistically significantly more frequently than eyes with a preoperative ORA of >0.9 D. Eyes with a high ORA preoperatively also had a high ORA postoperatively. Regression analysis showed that each diopter of preoperative ORA reduced efficacy by 0.07.A preoperative corneal astigmatism of ≥0.9 D could (partially) be taken into account in the LASIK design, even if the subjective refractive astigmatism is neutral.
Project description:BackgroundThe wide availability of internet-connected devices and new sensor technologies increasingly infuse longitudinal observational study designs and cohort studies. Simultaneously, the costly and time-consuming nature of traditional cohorts has given rise to alternative, technology-driven designs such as eCohorts, which remain inadequately described in the scientific literature.ObjectiveThe aim of this study was to outline and discuss what may constitute an eCohort, as well as to formulate a first working definition for health researchers based on a review of the relevant literature.MethodsA two-staged review and synthesis process was performed comparing 10 traditional cohorts and 10 eCohorts across the six core steps in the life cycle of cohort designs.ResultseCohorts are a novel type of technology-driven cohort study that are not physically linked to a clinical setting, follow more relaxed and not necessarily random sampling procedures, are primarily based on self-reported and digitally collected data, and systematically aim to leverage the internet and digitalization to achieve flexibility, interactivity, patient-centeredness, and scalability. This approach comes with some hurdles such as data quality, generalizability, and privacy concerns.ConclusionseCohorts have similarities to their traditional counterparts; however, they are sufficiently distinct to be treated as a separate type of cohort design. The novelty of eCohorts is associated with a range of strengths and weaknesses that require further exploration.
Project description:PURPOSE:Ocular refraction is measured in spherical equivalent as the power of the external lens required to focus images on the retina. Myopia (nearsightedness) and hyperopia (farsightedness) are the most common refractive errors, and the leading causes of visual impairment and blindness in the world. The goal of this study is to identify rare and low-frequency variants that influence spherical equivalent. METHODS:We conducted variant-level and gene-level quantitative trait association analyses for mean spherical equivalent, using data from 1,560 individuals in the Beaver Dam Eye Study. Genotyping was conducted using the Illumina exome array. We analyzed 34,976 single nucleotide variants and 11,571 autosomal genes across the genome, using single-variant tests as well as gene-based tests. RESULTS:Spherical equivalent was significantly associated with five genes in gene-based analysis: PTCHD2 at 1p36.22 (p = 3.6 × 10(-7)), CRISP3 at 6p12.3 (p = 4.3 × 10(-6)), NAP1L4 at 11p15.5 (p = 3.6 × 10(-6)), FSCB at 14q21.2 (p = 1.5 × 10(-7)), and AP3B2 at 15q25.2 (p = 1.6 × 10(-7)). The variant-based tests identified evidence suggestive of association with two novel variants in linkage disequilibrium (pairwise r(2) = 0.80) in the TCTE1 gene region at 6p21.1 (rs2297336, minor allele frequency (MAF) = 14.1%, ? = -0.62 p = 3.7 × 10(-6); rs324146, MAF = 16.9%, ? = -0.55, p = 1.4 × 10(-5)). In addition to these novel findings, we successfully replicated a previously reported association with rs634990 near GJD2 at 15q14 (MAF = 47%, ? = -0.29, p=1.8 × 10(-3)). We also found evidence of association with spherical equivalent on 2q37.1 in PRSS56 at rs1550094 (MAF = 31%, ? = -0.33, p = 1.7 × 10(-3)), a region previously associated with myopia. CONCLUSIONS:We identified several novel candidate genes that may play a role in the control of spherical equivalent. However, further studies are needed to replicate these findings. In addition, our results contribute to the increasing evidence that variation in the GJD2 and PRSS56 genes influence the development of refractive errors. Identifying that variation in these genes is associated with spherical equivalent may provide further insight into the etiology of myopia and consequent vision loss.