Temporal gene regulation by p53 is associated with the rotational setting of its binding sites in nucleosomes.
Ontology highlight
ABSTRACT: The tumor suppressor protein p53 is a DNA-binding transcription factor (TF) that, once activated, coordinates the expression of thousands of target genes. Increased p53 binding to gene promoters occurs shortly after p53 activation. Intriguingly, gene transcription exhibits differential kinetics with some genes being induced early (early genes) and others being induced late (late genes). To understand pre-binding factors contributing to the temporal gene regulation by p53, we performed time-course RNA sequencing experiments in human colon cancer cell line HCT116 treated with fluorouracil to identify early and late genes. Published p53 ChIP fragments co-localized with the early or late genes were used to uncover p53 binding sites (BS). We demonstrate that the BS associated with early genes are clustered around gene starts with decreased nucleosome occupancy. DNA analysis shows that these BS are likely exposed on nucleosomal surface if wrapped into nucleosomes, thereby facilitating stable interactions with and fast induction by p53. By contrast, p53 BS associated with late genes are distributed uniformly across the genes with increased nucleosome occupancy. Predicted rotational settings of these BS show limited accessibility. We therefore propose a hypothetical model in which the BS are fully, partially or not accessible to p53 in the nucleosomal context. The partial accessibility of the BS allows subunits of a p53 tetramer to bind, but the resulting p53-DNA complex may not be stable enough to recruit cofactors, which leads to delayed induction. Our work highlights the importance of DNA conformations of p53 BS in gene expression dynamics.
SUBMITTER: Freewoman JM
PROVIDER: S-EPMC8098069 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA