Unknown

Dataset Information

0

Data-driven reaction coordinate discovery in overdamped and non-conservative systems: application to optical matter structural isomerization.


ABSTRACT: Optical matter (OM) systems consist of (nano-)particle constituents in solution that can self-organize into ordered arrays that are bound by electrodynamic interactions. They also manifest non-conservative forces, and the motions of the nano-particles are overdamped; i.e., they exhibit diffusive trajectories. We propose a data-driven approach based on principal components analysis (PCA) to determine the collective modes of non-conservative overdamped systems, such as OM structures, and harmonic linear discriminant analysis (HLDA) of time trajectories to estimate the reaction coordinate for structural transitions. We demonstrate the approach via electrodynamics-Langevin dynamics simulations of six electrodynamically-bound nanoparticles in an incident laser beam. The reaction coordinate we discover is in excellent accord with a rigorous committor analysis, and the identified mechanism for structural isomerization is in very good agreement with the experimental observations. The PCA-HLDA approach to data-driven discovery of reaction coordinates can aid in understanding and eventually controlling non-conservative and overdamped systems including optical and active matter systems.

SUBMITTER: Chen S 

PROVIDER: S-EPMC8099877 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC2719472 | biostudies-other
| S-EPMC6814766 | biostudies-literature
| S-EPMC6151955 | biostudies-literature
| S-EPMC6688854 | biostudies-literature
| S-EPMC1941458 | biostudies-literature
| S-EPMC7277127 | biostudies-literature
| S-EPMC4917961 | biostudies-literature
| S-EPMC6482097 | biostudies-literature