Unknown

Dataset Information

0

Computational generation of proteins with predetermined three-dimensional shapes using ProteinSolver.


ABSTRACT: Computational generation of new proteins with a predetermined three-dimensional shape and computational optimization of existing proteins while maintaining their shape are challenging problems in structural biology. Here, we present a protocol that uses ProteinSolver, a pre-trained graph convolutional neural network, to quickly generate thousands of sequences matching a specific protein topology. We describe computational approaches that can be used to evaluate the generated sequences, and we show how select sequences can be validated experimentally. For complete details on the use and execution of this protocol, please refer to Strokach et al. (2020).

SUBMITTER: Strokach A 

PROVIDER: S-EPMC8102803 | biostudies-literature | 2021 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Computational generation of proteins with predetermined three-dimensional shapes using ProteinSolver.

Strokach Alexey A   Becerra David D   Corbi-Verge Carles C   Perez-Riba Albert A   Kim Philip M PM  

STAR protocols 20210428 2


Computational generation of new proteins with a predetermined three-dimensional shape and computational optimization of existing proteins while maintaining their shape are challenging problems in structural biology. Here, we present a protocol that uses ProteinSolver, a pre-trained graph convolutional neural network, to quickly generate thousands of sequences matching a specific protein topology. We describe computational approaches that can be used to evaluate the generated sequences, and we sh  ...[more]

Similar Datasets

| S-EPMC4256082 | biostudies-literature
| S-EPMC2688462 | biostudies-literature
| S-EPMC5830783 | biostudies-literature
| S-EPMC9921328 | biostudies-literature
| S-EPMC4493699 | biostudies-literature
| S-EPMC3547082 | biostudies-literature
| S-EPMC7080779 | biostudies-literature
| S-EPMC7903323 | biostudies-literature
| S-EPMC8429105 | biostudies-literature
| S-EPMC2685140 | biostudies-literature