Project description:SARS-CoV-2 has rapidly spread across the globe and infected hundreds of millions of people worldwide. As our experience with this virus continues to grow, our understanding of both short-term and long-term complications of infection with SARS-CoV-2 continues to grow as well. Just as there is heterogeneity in the acute infectious phase, there is heterogeneity in the long-term complications seen following COVID-19 illness. The purpose of this review article is to present the current literature with regards to the epidemiology, pathophysiology, and proposed management algorithms for the various long-term sequelae that have been observed in each organ system following infection with SARS-CoV-2. We will also consider future directions, with regards to newer variants of the virus and their potential impact on the long-term complications observed.
Project description:To explore the relationship between SARS-CoV-2 infection in different time before operation and postoperative main complications (mortality, main pulmonary and cardiovascular complications) 30 days after operation; To determine the best timing of surgery after SARS-CoV-2 infection.
Project description:The coronavirus disease-2019 (COVID-19) has become a global pandemic. It has spread to more than 100 countries, and more than 1 million cases have been confirmed. Although coronavirus causes severe respiratory infections in humans, accumulating data have demonstrated cardiac complications and poor outcome in patients with COVID-19. A large percent of patients have underlying cardiovascular disease, and they are at a high risk of developing cardiac complications. The basics of the virus, the clinical manifestations, and the possible mechanisms of cardiac complications in patients with COVID-19 are reviewed. Before an effective vaccine or medicine is available, supportive therapy and identifying patients who are at high risk of cardiac complications are important.
Project description:AimThe present study aimed to describe in detail the changes to and assess the risk factors for poor long-term outcomes of psychiatric disorders in families of COVID-19 patients.MethodsA single-center, retrospective study using questionnaires. Family members of patients admitted to the intensive care unit (ICU) with severe COVID-19 participated. Psychiatric disorders refer to the psychological distress such as anxiety, depression, and posttraumatic stress disorder (PTSD) experienced by the patient's family.ResultsForty-six family members completed the survey and were analyzed. Anxiety, depression, and PTSD occurred in 24%, 33%, and 2% of family members, respectively, and psychiatric disorders occurred in 39%. On multivariable analysis, living in the same house with the patient was independently associated with a lower risk of psychiatric disorders in families of COVID-19 patients (OR, 0.180; 95% CI, 0.036-0.908; p = 0.038). Furthermore, four family members overcame psychiatric disorders, and six family members newly developed psychiatric disorders during the one-year follow-up period.ConclusionApproximately 40% of family members had long-term psychiatric disorders, and some of them overcame the psychiatric disorders, and some newly developed psychiatric disorders over the one-year follow-up. Living in the same house with the patient was possibly significantly associated with the reduction of long-term symptoms of psychiatric disorders, but this result must be interpreted with care. Further large studies are needed to examine the factors associated with the long-term mental status of family members.
Project description:The causative organism, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), exhibits a wide spectrum of clinical manifestations in disease-ridden patients. Differences in the severity of COVID-19 ranges from asymptomatic infections and mild cases to the severe form, leading to acute respiratory distress syndrome (ARDS) and multiorgan failure with poor survival. MiRNAs can regulate various cellular processes, including proliferation, apoptosis, and differentiation, by binding to the 3′UTR of target mRNAs inducing their degradation, thus serving a fundamental role in post-transcriptional repression. Alterations of miRNA levels in the blood have been described in multiple inflammatory and infectious diseases, including SARS-related coronaviruses. We used microarrays to delineate the miRNAs and snoRNAs signature in the peripheral blood of severe COVID-19 cases (n=9), as compared to mild (n=10) and asymptomatic (n=10) patients, and identified differentially expressed transcripts in severe versus asymptomatic, and others in severe versus mild COVID-19 cases. A cohort of 29 male age-matched patients were selected. All patients were previously diagnosed with COVID-19 using TaqPath COVID-19 Combo Kit (Thermo Fisher Scientific, Waltham, Massachusetts), or Cobas SARS-CoV-2 Test (Roche Diagnostics, Rotkreuz, Switzerland), with a CT value < 30. Additional criterion for selection was age between 35 and 75 years. Participants were grouped into severe, mild and asymptomatic. Classifying severe cases was based on requirement of high-flow oxygen support and ICU admission (n=9). Whereas mild patients were identified based on symptoms and positive radiographic findings with pulmonary involvement (n=10). Patients with no clinical presentation were labelled as asymptomatic cases (n=10).
Project description:To understand and analyse the global impact of COVID-19 on outpatient services, inpatient care, elective surgery, and perioperative colorectal cancer care, a DElayed COloRectal cancer surgery (DECOR-19) survey was conducted in collaboration with numerous international colorectal societies with the objective of obtaining several learning points from the impact of the COVID-19 outbreak on our colorectal cancer patients which will assist us in the ongoing management of our colorectal cancer patients and to provide us safe oncological pathways for future outbreaks.
Project description:Background and purposeCoronavirus disease 2019 (COVID-19) evolved quickly into a global pandemic with myriad systemic complications, including stroke. We report the largest case series to date of cerebrovascular complications of COVID-19 and compare with stroke patients without infection.MethodsRetrospective case series of COVID-19 patients with imaging-confirmed stroke, treated at 11 hospitals in New York, between March 14 and April 26, 2020. Demographic, clinical, laboratory, imaging, and outcome data were collected, and cases were compared with date-matched controls without COVID-19 from 1 year prior.ResultsEighty-six COVID-19-positive stroke cases were identified (mean age, 67.4 years; 44.2% women). Ischemic stroke (83.7%) and nonfocal neurological presentations (67.4%) predominated, commonly involving multivascular distributions (45.8%) with associated hemorrhage (20.8%). Compared with controls (n=499), COVID-19 was associated with in-hospital stroke onset (47.7% versus 5.0%; P<0.001), mortality (29.1% versus 9.0%; P<0.001), and Black/multiracial race (58.1% versus 36.9%; P=0.001). COVID-19 was the strongest independent risk factor for in-hospital stroke (odds ratio, 20.9 [95% CI, 10.4-42.2]; P<0.001), whereas COVID-19, older age, and intracranial hemorrhage independently predicted mortality.ConclusionsCOVID-19 is an independent risk factor for stroke in hospitalized patients and mortality, and stroke presentations are frequently atypical.
Project description:The emergence of the novel SARS coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), has resulted in an unprecedented pandemic that has been accompanied by a global health crisis. Although the lungs are the main organs involved in COVID-19, systemic disease with a wide range of clinical manifestations also develops in patients infected with SARS-CoV-2. One of the major systems affected by this virus is the cardiovascular system. The presence of preexisting cardiovascular disease increases mortality in patients with COVID-19, and cardiovascular injuries, including myocarditis, cardiac rhythm abnormalities, endothelial cell injury, thrombotic events, and myocardial interstitial fibrosis, are observed in some patients with COVID-19. The underlying pathophysiology of COVID-19-associated cardiovascular complications is not fully understood, although direct viral infection of myocardium and cytokine storm have been suggested as possible mechanisms of myocarditis. In this Review, we summarize available data on SARS-CoV-2-related cardiac damage and discuss potential mechanisms of cardiovascular implications of this rapidly spreading virus.
Project description:To analyse gene expression pattern in different disease state of COVID-19 patients. Experimental workflow: 1) rRNA was removed by using RNase H method, 2) QAIseq FastSelect RNA Removal Kit was used to remove the Globin RNA, 3) The purified fragmented cDNA was combined with End Repair Mix, then add A-Tailing Mix, mix well by pipetting, incubation, 4) PCR amplification, 5) Library quality control and pooling cyclization, 6) The RNA library was sequenced by MGI2000 PE100 platform with 100bp paired-end reads. Analysis steps: 1) RNA-seq raw sequencing reads were filtered by SOAPnuke (Li et al., 2008) to remove reads with sequencing adapter, with low-quality base ratio (base quality < 5) > 20%, and with unknown base (’N’ base) ratio > 5%. 2) Reads aligned to rRNA by Bowtie2 (v2.2.5) (Langmead and Salzberg, 2012) were removed. 3) The clean reads were mapped to the reference genome using HISAT2 (Kim et al., 2015). Bowtie2 (v2.2.5) was applied to align the clean reads to the transcriptome. 4)Then the gene expression level (FPKM) was determined by RSEM (Li and Dewey, 2011). Genes with FPKM > 0.1 in at least one sample were retained.