Project description:Severe cases of COVID-19 are associated with extensive lung damage and the presence of infected multinucleated syncytial pneumocytes. The viral and cellular mechanisms regulating the formation of these syncytia are not well understood. Here, we show that SARS-CoV-2 infected cells express the Spike protein (S) at their surface and fuse with ACE2-positive neighbouring cells. Expression of S without any other viral proteins triggers syncytia formation. Interferon-induced transmembrane proteins (IFITMs), a family of restriction factors that block the entry of many viruses, inhibit S-mediated fusion, with IFITM1 being more active than IFITM2 and IFITM3. On the contrary, the TMPRSS2 serine protease, which is known to enhance infectivity of cell-free virions, processes both S and ACE2 and increases syncytia formation by accelerating the fusion process. TMPRSS2 thwarts the antiviral effect of IFITMs. Our results show that SARS-CoV-2 pathological effects are modulated by cellular proteins that either inhibit or facilitate syncytia formation.
Project description:The pharmacological arsenal against the COVID-19 pandemic is largely based on generic anti-inflammatory strategies or poorly scalable solutions. Moreover, as the ongoing vaccination campaign is rolling slower than wished, affordable and effective therapeutics are needed. To this end, there is increasing attention toward computational methods for drug repositioning and de novo drug design. Here, multiple data-driven computational approaches are systematically integrated to perform a virtual screening and prioritize candidate drugs for the treatment of COVID-19. From the list of prioritized drugs, a subset of representative candidates to test in human cells is selected. Two compounds, 7-hydroxystaurosporine and bafetinib, show synergistic antiviral effects in vitro and strongly inhibit viral-induced syncytia formation. Moreover, since existing drug repositioning methods provide limited usable information for de novo drug design, the relevant chemical substructures of the identified drugs are extracted to provide a chemical vocabulary that may help to design new effective drugs.
Project description:Severe cases of COVID-19 are associated with extensive lung damage and the presence of infected multinucleated syncytial pneumocytes. The viral and cellular mechanisms regulating the formation of these syncytia are not well understood. Here, we show that SARS-CoV-2-infected cells express the Spike protein (S) at their surface and fuse with ACE2-positive neighboring cells. Expression of S without any other viral proteins triggers syncytia formation. Interferon-induced transmembrane proteins (IFITMs), a family of restriction factors that block the entry of many viruses, inhibit S-mediated fusion, with IFITM1 being more active than IFITM2 and IFITM3. On the contrary, the TMPRSS2 serine protease, which is known to enhance infectivity of cell-free virions, processes both S and ACE2 and increases syncytia formation by accelerating the fusion process. TMPRSS2 thwarts the antiviral effect of IFITMs. Our results show that SARS-CoV-2 pathological effects are modulated by cellular proteins that either inhibit or facilitate syncytia formation.
Project description:Many enveloped viruses induce multinucleated cells (syncytia), reflective of membrane fusion events caused by the same machinery that underlies viral entry. These syncytia are thought to facilitate replication and evasion of the host immune response. Here, we report that co-culture of human cells expressing the receptor ACE2 with cells expressing SARS-CoV-2 spike, results in synapse-like intercellular contacts that initiate cell-cell fusion, producing syncytia resembling those we identify in lungs of COVID-19 patients. To assess the mechanism of spike/ACE2-driven membrane fusion, we developed a microscopy-based, cell-cell fusion assay to screen ~6000 drugs and >30 spike variants. Together with quantitative cell biology approaches, the screen reveals an essential role for biophysical aspects of the membrane, particularly cholesterol-rich regions, in spike-mediated fusion, which extends to replication-competent SARS-CoV-2 isolates. Our findings potentially provide a molecular basis for positive outcomes reported in COVID-19 patients taking statins and suggest new strategies for therapeutics targeting the membrane of SARS-CoV-2 and other fusogenic viruses.
Project description:Severe COVID-19 is characterized by lung abnormalities, including the presence of syncytial pneumocytes. Syncytia form when SARS-CoV-2 spike protein expressed on the surface of infected cells interacts with the ACE2 receptor on neighboring cells. The syncytia forming potential of spike variant proteins remain poorly characterized. Here, we first assessed Alpha (B.1.1.7) and Beta (B.1.351) spread and fusion in cell cultures, compared with the ancestral D614G strain. Alpha and Beta replicated similarly to D614G strain in Vero, Caco-2, Calu-3, and primary airway cells. However, Alpha and Beta formed larger and more numerous syncytia. Variant spike proteins displayed higher ACE2 affinity compared with D614G. Alpha, Beta, and D614G fusion was similarly inhibited by interferon-induced transmembrane proteins (IFITMs). Individual mutations present in Alpha and Beta spikes modified fusogenicity, binding to ACE2 or recognition by monoclonal antibodies. We further show that Delta spike also triggers faster fusion relative to D614G. Thus, SARS-CoV-2 emerging variants display enhanced syncytia formation.
Project description:Virus fusion process is evolutionarily conserved and provides a promising pan-viral target. Cell-cell fusion leads to syncytial formation and has implications in pathogenesis, virus spread and immune evasion. Drugs that target these processes can be developed into anti-virals. Here, we have developed sensitive, rapid, adaptable fusion reporter gene assays as models for plasma membrane and alternative fusion pathways as well as syncytial fusion in the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and have confirmed their specificity using neutralizing antibodies and specific protease inhibitors. The fusion report gene assays are more sensitive and unbiased than morphological fusion assay. The fusion assays can differentiate between transmembrane serine protease 2 (TMPRSS2)-dependency in TMPRSS2(+) cells and trypsin-dependency in angiotensin-converting enzyme 2 (ACE2)(+)TMPRSS2(-) cells. Moreover, we have identified putative novel fusion processes that are triggered by an acidic pH with and without trypsin. Coupled with morphological fusion criteria, we have found that syncytia formation is enhanced by TMPRSS2 or trypsin. By testing against our top drug hits previously shown to inhibit SARS-CoV-2 pseudovirus infection, we have identified several fusion inhibitors including structurally related lopsided kite-shaped molecules. Our results have important implications in the development of universal blockers and synergistic therapeutics and the small molecule inhibitors can provide important tools in elucidating the fusion process.
Project description:BackgroundThe entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) into the host cell is mediated through the binding of the SARS-CoV-2 Spike protein via the receptor binding domain (RBD) to human angiotensin-converting enzyme 2 (hACE2). Identifying compounds that inhibit Spike-ACE2 binding would be a promising and safe antiviral approach against COVID-19.MethodsIn this study, we used a BSL-2 compatible replication-competent vesicular stomatitis virus (VSV) expressing Spike protein of SARS-CoV-2 with eGFP reporter system (VSV-eGFP-SARS-CoV-2) in a recombinant permissive cell system for high-throughput screening of viral entry blockers. The SARS-CoV-2 permissive reporter system encompasses cells that stably express hACE2-tagged cerulean and H2B tagged with mCherry, as a marker of nuclear condensation, which also enables imaging of fused cells among infected EGFP positive cells and could provide real-time information on syncytia formation.ResultsA limited high-throughput screening identified six natural products that markedly inhibited VSV-eGFP-SARS-CoV-2 with minimum toxicity. Further studies of Spike-S1 binding using the permissive cells showed Scillaren A and 17-Aminodemethoxygeldanamycin could inhibit S1 binding to ACE2 among the six leads. A real-time imaging revealed delayed inhibition of syncytia by Scillaren A, Proscillaridin, Acetoxycycloheximide and complete inhibition by Didemnin B indicating that the assay is a reliable platform for any image-based drug screening.ConclusionA BSL-2 compatible assay system that is equivalent to the infectious SARS-CoV-2 is a promising tool for high-throughput screening of large compound libraries for viral entry inhibitors against SARS-CoV-2 along with toxicity and effects on syncytia. Studies using clinical isolates of SARS-CoV-2 are warranted to confirm the antiviral potency of the leads and the utility of the screening system.
Project description:Only a handful of cell types, including fibroblasts, epithelial, and endothelial cells, can support human cytomegalovirus (CMV) replication in vitro, in striking contrast to the situation in vivo. While the susceptibility of epithelial and endothelial cells to CMV infection is strongly modulated by their anatomical site of origin, multiple CMV strains have been successfully isolated and propagated on fibroblasts derived from different organs. As oral mucosal cells are likely involved in CMV acquisition, we sought to evaluate the ability of infant labial fibroblasts to support CMV replication, compared to that of commonly used foreskin and fetal lung fibroblasts. No differences were found in the proportion of cells initiating infection, or in the amounts of viral progeny produced after exposure to the fibroblast-adapted CMV strain AD169 or to the endothelial cell-adapted strain TB40/E. Syncytia formation was, however, significantly enhanced in infected labial and lung fibroblasts compared to foreskin-derived cells, and did not occur after infection with AD169. Together, these data indicate that fibroblast populations derived from different tissues are uniformly permissive to CMV infection but retain phenotypic differences of potential importance for infection-induced cell-cell fusion, and ensuing viral spread and pathogenesis in different organs.