Unknown

Dataset Information

0

Amphiphiles capsaicin and triton X-100 regulate the chemotherapy drug colchicine's membrane adsorption and ion pore formation potency.


ABSTRACT: Chemotherapy drugs (CDs), e.g. colchicine derivative thiocolchicoside (TCC) and taxol, have been found to physically bind with lipid bilayer membrane and induce ion pores. Amphiphiles capsaicin (Cpsn) and triton X-100 (TX100) are known to regulate lipid bilayer physical properties by altering bilayer elasticity and lipid monolayer curvature. Both CDs and amphiphiles are predicted to physically accommodate alongside lipids in membrane to exert their membrane effects. The effects of their binary accommodation in the lipid membrane are yet to be known. Firstly, we have performed experimental studies to inspect whether membrane adsorption of CDs (colchicine or TCC) gets regulated due to any membrane effects of Cpsn or TX100. We find that the aqueous phase presence of these amphiphiles, known to reduce the membrane stiffness, works towards enhancing the membrane adsorption of CDs. Our recently patented technology 'direct detection method' helps address the membrane adsorption mechanisms. Secondly, in electrophysiology records, we measured the amphiphile effects on the potency of ion channel induction due to CDs. We find that amphiphiles increase the CD induced channel induction potency. Specifically, the membrane conductance, apparently due to the ion channel induction by the TCC, increases substantially due to the Cpsn or TX100 induced alterations of the bilayer physical properties. Thus we may conclude that the binary presence of CDs and amphiphiles in lipid membrane may influence considerably in CD's membrane adsorption, as well as the membrane effects, such as ion pore formation.

SUBMITTER: Ashrafuzzaman M 

PROVIDER: S-EPMC8117037 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC8067072 | biostudies-literature
| S-EPMC3808583 | biostudies-literature
| S-EPMC3593792 | biostudies-literature
| S-EPMC6294906 | biostudies-literature
| S-EPMC5998024 | biostudies-literature
| S-EPMC9285696 | biostudies-literature
| S-EPMC4312132 | biostudies-literature
| S-EPMC8304557 | biostudies-literature
| S-EPMC1186627 | biostudies-other
| S-EPMC3100990 | biostudies-literature