Unknown

Dataset Information

0

The SGLT2 inhibitor Empagliflozin attenuates interleukin-17A-induced human aortic smooth muscle cell proliferation and migration by targeting TRAF3IP2/ROS/NLRP3/Caspase-1-dependent IL-1β and IL-18 secretion.


ABSTRACT: Chronic inflammation and persistent oxidative stress contribute to the development and progression of vascular proliferative diseases. We hypothesized that the proinflammatory cytokine interleukin (IL)-17A induces oxidative stress and amplifies inflammatory signaling in human aortic smooth muscle cells (SMC) via TRAF3IP2-mediated NLRP3/caspase-1-dependent mitogenic and migratory proinflammatory cytokines IL-1β and IL-18. Further, we hypothesized that these maladaptive changes are prevented by empagliflozin (EMPA), an SGLT2 (Sodium/Glucose Cotransporter 2) inhibitor. Supporting our hypotheses, exposure of cultured SMC to IL-17A promoted proliferation and migration via TRAF3IP2, TRAF3IP2-dependent superoxide and hydrogen peroxide production, NLRP3 expression, caspase-1 activation, and IL-1β and IL-18 secretion. Furthermore, NLRP3 knockdown, caspase-1 inhibition, and pretreatment with IL-1β and IL-18 neutralizing antibodies and IL-18BP, each attenuated IL-17A-induced SMC migration and proliferation. Importantly, SMC express SGLT2, and pre-treatment with EMPA attenuated IL-17A/TRAF3IP2-dependent oxidative stress, NLRP3 expression, caspase-1 activation, IL-1β and IL-18 secretion, and SMC proliferation and migration. Importantly, silencing SGLT2 attenuated EMPA-mediated inhibition of IL-17A-induced cytokine secretion and SMC proliferation and migration. EMPA exerted these beneficial antioxidant, anti-inflammatory, anti-mitogenic and anti-migratory effects under normal glucose conditions and without inducing cell death. These results suggest the therapeutic potential of EMPA in vascular proliferative diseases.

SUBMITTER: Sukhanov S 

PROVIDER: S-EPMC8118186 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC9294853 | biostudies-literature
| S-EPMC7156904 | biostudies-literature
| S-EPMC4121847 | biostudies-literature
| S-EPMC4221042 | biostudies-literature
| S-EPMC7140679 | biostudies-literature
| S-EPMC7851739 | biostudies-literature
| S-EPMC8151056 | biostudies-literature
| S-EPMC6371858 | biostudies-literature
| S-EPMC7330863 | biostudies-literature
| S-EPMC3165484 | biostudies-literature