Unknown

Dataset Information

0

Intelligent phototriggered nanoparticles induce a domino effect for multimodal tumor therapy.


ABSTRACT: Rationale: Integration of several monotherapies into a single nanosystem can produce remarkable synergistic antitumor effects compared with separate delivery of combination therapies. We developed near-infrared (NIR) light-triggered nanoparticles that induce a domino effect for multimodal tumor therapy. Methods: The designed intelligent phototriggered nanoparticles (IPNs) were composed of a copper sulfide-loaded upconversion nanoparticle core, a thermosensitive and photosensitive enaminitrile molecule (EM) organogel shell loaded with anticancer drugs, and a cancer cell membrane coating. Irradiation with an NIR laser activated a domino effect beginning with photothermal generation by copper sulfide for photothermal therapy that also resulted in phase transformation of the EM gel to release the anticancer drug. Meanwhile, the NIR light energy was converted to ultraviolet light by the upconversion core to excite the EM, which generated reactive oxygen species for photodynamic therapy. Results: IPNs achieved excellent antitumor effects in vitro and in vivo with little systemic toxicity, indicating that IPNs could serve as a safe and high-performance instrument for synergetic antitumor therapy. Conclusion: This intelligent drug delivery system induced a chain reaction generating multiple antitumor therapies after a single stimulus.

SUBMITTER: Xu X 

PROVIDER: S-EPMC8120229 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC5979633 | biostudies-other
| S-EPMC5764953 | biostudies-literature
| S-EPMC5437012 | biostudies-literature
| S-EPMC8970328 | biostudies-literature
| S-EPMC7935529 | biostudies-literature
| S-EPMC3368515 | biostudies-literature
| S-EPMC10196962 | biostudies-literature
| S-EPMC5605714 | biostudies-literature
| S-EPMC5469101 | biostudies-literature
| S-EPMC3640526 | biostudies-literature