Unknown

Dataset Information

0

Heat Scanning for the Fabrication of Conductive Fibers.


ABSTRACT: Conductive fibers are essential building blocks for implementing various functionalities in a textile platform that is highly conformable to mechanical deformation. In this study, two major techniques were developed to fabricate silver-deposited conductive fibers. First, a droplet-coating method was adopted to coat a nylon fiber with silver nanoparticles (AgNPs) and silver nanowires (AgNWs). While conventional dip coating uses a large ink pool and thus wastes coating materials, droplet-coating uses minimal quantities of silver ink by translating a small ink droplet along the nylon fiber. Secondly, the silver-deposited fiber was annealed by similarly translating a tubular heater along the fiber to induce sintering of the AgNPs and AgNWs. This heat-scanning motion avoids excessive heating and subsequent thermal damage to the nylon fiber. The effects of heat-scanning time and heater power on the fiber conductance were systematically investigated. A conductive fiber with a resistance as low as ~2.8 Ω/cm (0.25 Ω/sq) can be produced. Finally, it was demonstrated that the conductive fibers can be applied in force sensors and flexible interconnectors.

SUBMITTER: Jang J 

PROVIDER: S-EPMC8123635 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC9639447 | biostudies-literature
| S-EPMC4424659 | biostudies-literature
| S-EPMC5524596 | biostudies-literature
| S-EPMC8433801 | biostudies-literature
| S-EPMC7438602 | biostudies-literature
| S-EPMC8209028 | biostudies-literature
| S-EPMC9458136 | biostudies-literature
| S-EPMC10280805 | biostudies-literature
| S-EPMC6777206 | biostudies-literature
| S-EPMC5706210 | biostudies-literature