Modification of starch composition, structure and properties through editing of TaSBEIIa in both winter and spring wheat varieties by CRISPR/Cas9.
Ontology highlight
ABSTRACT: Foods high in amylose content and resistant starch (RS) offer great potential to improve human health and lower the risk of serious noninfectious diseases. Common wheat (Triticum aestivum L.) is a major staple food crop globally. However, the RS contents in the grains of modern wheat varieties are low. Here, we report the generation of high-amylose wheat through targeted mutagenesis of TaSBEIIa in a modern winter wheat cv Zhengmai 7698 (ZM) and a spring wheat cv Bobwhite by CRISPR/Cas9, respectively. We generated a series of transgene-free mutant lines either with partial or triple-null TasbeIIa alleles in ZM and Bobwhite, respectively. Analyses of starch composition, structure and properties revealed that the effects of partial or triple-null alleles were dosage dependent with triple-null lines demonstrated more profound impacts on starch composition, fine structures of amylopectin and physiochemical and nutritional properties. The flours of triple-null lines possessed significantly increased amylose, RS, protein and soluble pentosan contents which benefit human health. Baking quality analyses indicated that the high-amylose flours may be used as additives or for making cookies. Collectively, we successfully modified the starch composition, structure and properties through targeted mutagenesis of TaSBEIIa by CRISPR/Cas9 in both winter and spring wheat varieties and generated transgene-free high-amylose wheat. Our finding provides deep insights on the role of TaSBEIIa in determining starch composition, structure, properties and end-use quality in different genetic backgrounds and improving RS content with multiple breeding and end-use applications in cereal crop species through genome editing for health benefits.
SUBMITTER: Li J
PROVIDER: S-EPMC8131058 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA