ABSTRACT: Polyanionic macromolecules including carboxylate-terminated polymers (polycarboxylates) are capable of inhibiting sexually transmitted viruses such as human immunodeficiency virus (HIV) and herpes simplex virus (HSV). Cellulose acetate phthalate (CAP), a pharmaceutically acceptable pH-sensitive polycarboxylate polymer, showed promising prophylactic activity against HIV and HSV, but the instability of CAP in an aqueous environment prevented its clinical development. Interestingly, several pharmaceutically acceptable polycarboxylates have features similar to CAP with an aqueous stability significantly higher than that of CAP. However, their activity against sexually transmitted viruses remains unexplored. Here, we evaluate the activity of various polycarboxylates such as polyvinyl acetate phthalate (PVAP), various grades of hydroxypropyl methylcellulose phthalate (HPMCP-50, HPMCP-55, and HPMCP-55S), and various grades of methacrylic acid copolymers (Eudragit L100-55, Eudragit L100, Eudragit S100, and Kollicoat MAE 100P) against HSV. We, for the first time, demonstrate that PVAP, HPMCP-55S, and Eudragit S100 have activity and selectivity against HSV-1 and HSV-2. Further, we report that polycarboxylates can be easily transformed into nanoparticles (NPs) and in the nanoparticulate form, they show similar or enhanced activity against HSV. Finally, using PVAP NPs, as a model, we demonstrate using in vitro HSV therapy studies that polycarboxylate NPs are capable of synergizing with antiviral drugs such as acyclovir (ACV), tenofovir, and tenofovir disoproxil fumarate. Thus, pharmaceutically acceptable carboxylic acid-terminated polymers and their NPs have the potential to be developed into topical formulations for the prevention and treatment of HSV infection.