Project description:Health care workers are at high risk for contracting coronavirus disease 2019. However, little is known about the risk of transmission between coworkers. The objective of this study was to determine the risk of transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) between coworkers in a surgical environment. This was an observational study of 394 health care workers in a surgical environment who were exposed to 2 known SARS-CoV-2-positive coworkers. Standard infection precautions were in place at the time of the exposure. All 394 exposed workers initially underwent nasopharyngeal swab testing for SARS-CoV-2 using the polymerase chain reaction technique. Of the original group, 387 were tested again with the same technique 1 week later. Of 394 SARS-CoV-2-exposed health care workers initially tested, 1 was positive. No new positive cases were found on repeated testing of 387 participants 1 week later. The risk of transmission of SARS-CoV-2 in a health care unit with universal masking and appropriate hand hygiene is low. This finding should provide some reassurance to surgical practices as they reopen.
Project description:BackgroundCountries continue to debate the need for decontamination of cold-chain food packaging to reduce possible SARS-CoV-2 fomite transmission among workers. While laboratory-based studies demonstrate persistence of SARS-CoV-2 on surfaces, the likelihood of fomite-mediated transmission under real-life conditions is uncertain.MethodsUsing a quantitative risk assessment model, we simulated in a frozen food packaging facility 1) SARS-CoV-2 fomite-mediated infection risks following worker exposure to contaminated plastic packaging; and 2) reductions in these risks attributed to masking, handwashing, and vaccination.FindingsIn a representative facility with no specific interventions, SARS-CoV-2 infection risk to a susceptible worker from contact with contaminated packaging was 2·8 × 10 -3 per 1h-period (95%CI: 6·9 × 10 -6 , 2·4 × 10 -2 ). Implementation of standard infection control measures, handwashing and masks (9·4 × 10 -6 risk per 1h-period, 95%CI: 2·3 × 10 -8 , 8·1 × 10 -5 ), substantially reduced risk (99·7%). Vaccination of the susceptible worker (two doses Pfizer/Moderna, vaccine effectiveness: 86-99%) combined with handwashing and masking reduced risk to less than 1·0 × 10 -6 . Simulating increased infectiousness/transmissibility of new variants (2-, 10-fold viral shedding) among a fully vaccinated workforce, handwashing and masks continued to mitigate risk (2·0 × 10 -6 -1·1 × 10 -5 risk per 1h-period). Decontamination of packaging in addition to these interventions reduced infection risks to below the 1·0 × 10 -6 risk threshold.InterpretationFomite-mediated SARS-CoV-2 infection risks were very low under cold-chain conditions. Handwashing and masking provide significant protection to workers, especially when paired with vaccination.FundingU.S. Department of Agriculture.
Project description:A key consideration in the Covid-19 pandemic is the dominant modes of transmission of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. The objective of this review was to synthesise the evidence for the potential airborne transmission of SARS-CoV-2 via aerosols. Systematic literature searches were conducted in PubMed, Embase, Europe PMC and National Health Service UK evidence up to 27 July 2020. A protocol was published and Cochrane guidance for rapid review methodology was adhered to throughout. Twenty-eight studies were identified. Seven out of eight epidemiological studies suggest aerosol transmission may occur, with enclosed environments and poor ventilation noted as possible contextual factors. Ten of the 16 air sampling studies detected SARS-CoV-2 ribonucleic acid; however, only three of these studies attempted to culture the virus with one being successful in a limited number of samples. Two of four virological studies using artificially generated aerosols indicated that SARS-CoV-2 is viable in aerosols. The results of this review indicate there is inconclusive evidence regarding the viability and infectivity of SARS-CoV-2 in aerosols. Epidemiological studies suggest possible transmission, with contextual factors noted. Viral particles have been detected in air sampling studies with some evidence of clinical infectivity, and virological studies indicate these particles may represent live virus, adding further plausibility. However, there is uncertainty as to the nature and impact of aerosol transmission of SARS-CoV-2, and its relative contribution to the Covid-19 pandemic compared with other modes of transmission.
Project description:The peak in influenza incidence during wintertime in temperate regions represents a longstanding, unresolved scientific question. One hypothesis is that the efficacy of airborne transmission via aerosols is increased at lower humidities and temperatures, conditions that prevail in wintertime. Recent work with a guinea pig model by Lowen et al. indicated that humidity and temperature do modulate airborne influenza virus transmission, and several investigators have interpreted the observed humidity dependence in terms of airborne virus survivability. This interpretation, however, neglects two key observations: the effect of ambient temperature on the viral growth kinetics within the animals, and the strong influence of the background airflow on transmission. Here we provide a comprehensive theoretical framework for assessing the probability of disease transmission via expiratory aerosols between test animals in laboratory conditions. The spread of aerosols emitted from an infected animal is modeled using dispersion theory for a homogeneous turbulent airflow. The concentration and size distribution of the evaporating droplets in the resulting "Gaussian breath plume" are calculated as functions of position, humidity, and temperature. The overall transmission probability is modeled with a combination of the time-dependent viral concentration in the infected animal and the probability of droplet inhalation by the exposed animal downstream. We demonstrate that the breath plume model is broadly consistent with the results of Lowen et al., without invoking airborne virus survivability. The results also suggest that, at least for guinea pigs, variation in viral kinetics within the infected animals is the dominant factor explaining the increased transmission probability observed at lower temperatures.
Project description:We conduct a large (N = 6567) online experiment to measure the features of non-pharmaceutical interventions (NPIs) that citizens of six European countries perceive to lower the risk of transmission of SARS-Cov-2 the most. We collected data in Bulgaria (n = 1069), France (n = 1108), Poland (n = 1104), Italy (n = 1087), Spain (n = 1102) and Sweden (n = 1097). Based on the features of the most widely adopted public health guidelines to reduce SARS-Cov-2 transmission (mask wearing vs not, outdoor vs indoor contact, short vs 90 min meetings, few vs many people present, and physical distancing of 1 or 2 m), we conducted a discrete choice experiment (DCE) to estimate the public's perceived risk of SARS-CoV-2 transmission in scenarios that presented mutually exclusive constellations of these features. Our findings indicate that participants' perception of transmission risk was most influenced by the NPI attributes of mask-wearing and outdoor meetings and the least by NPI attributes that focus on physical distancing, meeting duration, and meeting size. Differentiating by country, gender, age, cognitive style (reflective or intuitive), and perceived freight of COVID-19 moreover allowed us to identify important differences between subgroups. Our findings highlight the importance of improving health policy communication and citizens' health literacy about the design of NPIs and the transmission risk of SARS-Cov-2 and potentially future viruses.
Project description:We used an agent-based model Covasim to assess the risk of sustained community transmission of SARSCoV-2/COVID-19 in Queensland (Australia) in the presence of high-transmission variants of the virus. The model was calibrated using the demographics, policies, and interventions implemented in the state. Then, using the calibrated model, we simulated possible epidemic trajectories that could eventuate due to leakage of infected cases with high-transmission variants, during a period without recorded cases of locally acquired infections, known in Australian settings as "zero community transmission". We also examined how the threat of new variants reduces given a range of vaccination levels. Specifically, the model calibration covered the first-wave period from early March 2020 to May 2020. Predicted epidemic trajectories were simulated from early February 2021 to late March 2021. Our simulations showed that one infected agent with the ancestral (A.2.2) variant has a 14% chance of crossing a threshold of sustained community transmission (SCT) (i.e., > 5 infections per day, more than 3 days in a row), assuming no change in the prevailing preventative and counteracting policies. However, one agent carrying the alpha (B.1.1.7) variant has a 43% chance of crossing the same threshold; a threefold increase with respect to the ancestral strain; while, one agent carrying the delta (B.1.617.2) variant has a 60% chance of the same threshold, a fourfold increase with respect to the ancestral strain. The delta variant is 50% more likely to trigger SCT than the alpha variant. Doubling the average number of daily tests from ∼ 6,000 to 12,000 results in a decrease of this SCT probability from 43 to 33% for the alpha variant. However, if the delta variant is circulating we would need an average of 100,000 daily tests to achieve a similar decrease in SCT risk. Further, achieving a full-vaccination coverage of 70% of the adult population, with a vaccine with 70% effectiveness against infection, would decrease the probability of SCT from a single seed of alpha from 43 to 20%, on par with the ancestral strain in a naive population. In contrast, for the same vaccine coverage and same effectiveness, the probability of SCT from a single seed of delta would decrease from 62 to 48%, a risk slightly above the alpha variant in a naive population. Our results demonstrate that the introduction of even a small number of people infected with high-transmission variants dramatically increases the probability of sustained community transmission in Queensland. Until very high vaccine coverage is achieved, a swift implementation of policies and interventions, together with high quarantine adherence rates, will be required to minimise the probability of sustained community transmission.
Project description:BackgroundEvidence for indoor airborne transmission of SARS-CoV-2 is accumulating.ObjectivesWe assessed of the risk of illness due to airborne SARS-CoV-2 particles from breathing, speaking, singing, coughing, and sneezing in indoor environments.MethodsA risk assessment model, AirCoV2, for exposure to SARS-CoV-2 particles in aerosol droplets was developed. Previously published data on droplets expelled by breathing, speaking, singing, coughing, and sneezing by an infected person were used as inputs. Scenarios encompassed virus concentration, exposure time, and ventilation. Newly collected data of virus RNA copies in mucus from patients are presented.ResultsThe expelled volume of aerosols was highest for a sneeze, followed by a cough, singing, speaking, and breathing. After 20 min of exposure, at 107 RNA copies/mL in mucus, all mean illness risks were largely estimated to be below 0.001, except for the "high" sneeze scenario. At virus concentrations above 108 RNA copies/mL, and after 2 h of exposure, in the high and "low" sneeze scenarios, the high cough scenario and the singing scenario, risks exceeded 0.01 and may become very high, whereas the low coughing scenario, the high and low speaking scenarios and the breathing scenario remained below 0.1. After 2 h of exposure, singing became the second highest risk scenario. One air exchange per hour reduced risk of illness by about a factor of 2. Six air exchanges per hour reduced risks of illness by a factor of 8-13 for the sneeze and cough scenarios and by a factor of 4-9 for the other scenarios.DiscussionThe large variation in the volume of expelled aerosols is discussed. The model calculations indicated that SARS-CoV-2 transmission via aerosols outside of the 1.5-m social distancing norm can occur. Virus concentrations in aerosols and/or the amount of expelled aerosol droplets need to be high for substantial transmission via this route. AirCoV2 is made available as interactive computational tool. https://doi.org/10.1289/EHP7886.
Project description:The current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has created a significant threat to global health. While respiratory aerosols or droplets are considered as the main route of human-to-human transmission, secretions expelled by infected individuals can also contaminate surfaces and objects, potentially creating the risk of fomite-based transmission. Consequently, frequently touched objects such as paper currency and coins have been suspected as potential transmission vehicle. To assess the risk of SARS-CoV-2 transmission by banknotes and coins, we examined the stability of SARS-CoV-2 and bovine coronavirus, as surrogate with lower biosafety restrictions, on these different means of payment and developed a touch transfer method to examine transfer efficiency from contaminated surfaces to fingertips. Although we observed prolonged virus stability, our results indicate that transmission of SARS-CoV-2 via contaminated coins and banknotes is unlikely and requires high viral loads and a timely order of specific events.