1.1-µm Band Extended Wide-Bandwidth Wavelength-Swept Laser Based on Polygonal Scanning Wavelength Filter.
Ontology highlight
ABSTRACT: We demonstrated a 1.1-µm band extended wideband wavelength-swept laser (WSL) that combined two semiconductor optical amplifiers (SOAs) based on a polygonal scanning wavelength filter. The center wavelengths of the two SOAs were 1020 nm and 1140 nm, respectively. Two SOAs were connected in parallel in the form of a Mach-Zehnder interferometer. At a scanning speed of 1.8 kHz, the 10-dB bandwidth of the spectral output and the average power were approximately 228 nm and 16.88 mW, respectively. Owing to the nonlinear effect of the SOA, a decrease was observed in the bandwidth according to the scanning speed. Moreover, the intensity of the WSL decreased because the oscillation time was smaller than the buildup time. In addition, a cholesteric liquid crystal (CLC) cell was fabricated as an application of WSL, and the dynamic change of the first-order reflection of the CLC cell in the 1-µm band was observed using the WSL. The pitch jumps of the reflection band occurred according to the electric field applied to the CLC cell, and instantaneous changes were observed.
SUBMITTER: Lee GH
PROVIDER: S-EPMC8141112 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA