Unknown

Dataset Information

0

Spectral deep learning for prediction and prospective validation of functional groups.


ABSTRACT: State-of-the-art identification of the functional groups present in an unknown chemical entity requires the expertise of a skilled spectroscopist to analyse and interpret Fourier transform infra-red (FTIR), mass spectroscopy (MS) and/or nuclear magnetic resonance (NMR) data. This process can be time-consuming and error-prone, especially for complex chemical entities that are poorly characterised in the literature, or inefficient to use with synthetic robots producing molecules at an accelerated rate. Herein, we introduce a fast, multi-label deep neural network for accurately identifying all the functional groups of unknown compounds using a combination of FTIR and MS spectra. We do not use any database, pre-established rules, procedures, or peak-matching methods. Our trained neural network reveals patterns typically used by human chemists to identify standard groups. Finally, we experimentally validated our neural network, trained on single compounds, to predict functional groups in compound mixtures. Our methodology showcases practical utility for future use in autonomous analytical detection.

SUBMITTER: Fine JA 

PROVIDER: S-EPMC8152587 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC8156235 | biostudies-literature
| S-EPMC8360004 | biostudies-literature
| S-EPMC10904399 | biostudies-literature
| S-EPMC8396822 | biostudies-literature
2021-06-22 | GSE175456 | GEO
2023-03-31 | GSE165175 | GEO
| S-EPMC6349967 | biostudies-literature
| S-EPMC7292817 | biostudies-literature
2023-03-31 | GSE165173 | GEO
2023-03-31 | GSE165174 | GEO