Unknown

Dataset Information

0

Neuromorphic Binarized Polariton Networks.


ABSTRACT: The rapid development of artificial neural networks and applied artificial intelligence has led to many applications. However, current software implementation of neural networks is severely limited in terms of performance and energy efficiency. It is believed that further progress requires the development of neuromorphic systems, in which hardware directly mimics the neuronal network structure of a human brain. Here, we propose theoretically and realize experimentally an optical network of nodes performing binary operations. The nonlinearity required for efficient computation is provided by semiconductor microcavities in the strong quantum light-matter coupling regime, which exhibit exciton-polariton interactions. We demonstrate the system performance against a pattern recognition task, obtaining accuracy on a par with state-of-the-art hardware implementations. Our work opens the way to ultrafast and energy-efficient neuromorphic systems taking advantage of ultrastrong optical nonlinearity of polaritons.

SUBMITTER: Mirek R 

PROVIDER: S-EPMC8155323 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC8100137 | biostudies-literature
| S-EPMC3412809 | biostudies-literature
| S-EPMC7069063 | biostudies-literature
| S-EPMC8219687 | biostudies-literature
| S-EPMC6797708 | biostudies-literature
| S-EPMC5547135 | biostudies-literature
| S-EPMC5068316 | biostudies-literature
| S-EPMC6962102 | biostudies-literature
| S-EPMC6706626 | biostudies-literature
| S-EPMC7286302 | biostudies-literature