Quadrupolar charge dynamics in the nonmagnetic FeSe1-x S x superconductors.
Ontology highlight
ABSTRACT: We use polarization-resolved electronic Raman spectroscopy to study quadrupolar charge dynamics in a nonmagnetic [Formula: see text] superconductor. We observe two types of long-wavelength [Formula: see text] symmetry excitations: 1) a low-energy quasi-elastic scattering peak (QEP) and 2) a broad electronic continuum with a maximum at 55 meV. Below the tetragonal-to-orthorhombic structural transition at [Formula: see text], a pseudogap suppression with temperature dependence reminiscent of the nematic order parameter develops in the [Formula: see text] symmetry spectra of the electronic excitation continuum. The QEP exhibits critical enhancement upon cooling toward [Formula: see text] The intensity of the QEP grows with increasing sulfur concentration x and maximizes near critical concentration [Formula: see text], while the pseudogap size decreases with the suppression of [Formula: see text] We interpret the development of the pseudogap in the quadrupole scattering channel as a manifestation of transition from the non-Fermi liquid regime, dominated by strong Pomeranchuk-like fluctuations giving rise to intense electronic continuum of excitations in the fourfold symmetric high-temperature phase, to the Fermi liquid regime in the broken-symmetry nematic phase where the quadrupole fluctuations are suppressed.
SUBMITTER: Zhang W
PROVIDER: S-EPMC8157944 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA