Interplay between structural parameters and reactivity of Zr6-based MOFs as artificial proteases.
Ontology highlight
ABSTRACT: Structural parameters influencing the reactivity of metal-organic frameworks (MOF) are challenging to establish. However, understanding their effect is crucial to further develop their catalytic potential. Here, we uncovered a correlation between reaction kinetics and the morphological structure of MOF-nanozymes using the hydrolysis of a dipeptide under physiological pH as model reaction. Comparison of the activation parameters in the presence of NU-1000 with those observed with MOF-808 revealed the reaction outcome is largely governed by the Zr6 cluster. Additionally, its structural environment completely changes the energy profile of the hydrolysis step, resulting in a higher energy barrier ΔG ‡ for NU-1000 due to a much larger ΔS ‡ term. The reactivity of NU-1000 towards a hen egg white lysozyme protein under physiological pH was also evaluated, and the results pointed to a selective cleavage at only 3 peptide bonds. This showcases the potential of Zr-MOFs to be developed into heterogeneous catalysts for non-enzymatic but selective transformation of biomolecules, which are crucial for many modern applications in biotechnology and proteomics.
SUBMITTER: Loosen A
PROVIDER: S-EPMC8159359 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA