Unknown

Dataset Information

0

Predictive modeling for peri-implantitis by using machine learning techniques.


ABSTRACT: The purpose of this retrospective cohort study was to create a model for predicting the onset of peri-implantitis by using machine learning methods and to clarify interactions between risk indicators. This study evaluated 254 implants, 127 with and 127 without peri-implantitis, from among 1408 implants with at least 4 years in function. Demographic data and parameters known to be risk factors for the development of peri-implantitis were analyzed with three models: logistic regression, support vector machines, and random forests (RF). As the results, RF had the highest performance in predicting the onset of peri-implantitis (AUC: 0.71, accuracy: 0.70, precision: 0.72, recall: 0.66, and f1-score: 0.69). The factor that had the most influence on prediction was implant functional time, followed by oral hygiene. In addition, PCR of more than 50% to 60%, smoking more than 3 cigarettes/day, KMW less than 2 mm, and the presence of less than two occlusal supports tended to be associated with an increased risk of peri-implantitis. Moreover, these risk indicators were not independent and had complex effects on each other. The results of this study suggest that peri-implantitis onset was predicted in 70% of cases, by RF which allows consideration of nonlinear relational data with complex interactions.

SUBMITTER: Mameno T 

PROVIDER: S-EPMC8160334 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC6794897 | biostudies-literature
| S-EPMC6122137 | biostudies-literature
| S-EPMC3285649 | biostudies-literature
| S-EPMC8171076 | biostudies-literature
| S-EPMC7564708 | biostudies-literature
| S-EPMC10674044 | biostudies-literature
| S-EPMC7806626 | biostudies-literature
| S-EPMC6281253 | biostudies-other
| S-EPMC10767743 | biostudies-literature
| S-EPMC8527795 | biostudies-literature