Project description:In December 2019, a new coronavirus, SARS-CoV-2, was found to in Wuhan, China. Cases of infection were subsequently detected in other countries in a short period of time, resulting in the declaration of the COVID-19 pandemic by the World Health Organization (WHO) on 11 March 2020. Questions about the impact of herd immunity of pre-existing immune reactivity to SARS-CoV-2 on COVID-19 severity, associated with the immunity to seasonal manifestation, are still to be resolved and may be useful for understanding some processes that precede the emergence of a pandemic virus. Perhaps this will contribute to understanding some of the processes that precede the emergence of a pandemic virus. We assessed the specificity and virus-neutralizing capacity of antibodies reacting with the nucleocapsid and spike proteins of SARS-CoV-2 in a set of serum samples collected in October and November 2019, before the first COVID-19 cases were documented in this region. Blood serum samples from 799 residents of several regions of Siberia, Russia, (the Altai Territory, Irkutsk, Kemerovo and Novosibirsk regions, the Republic of Altai, Buryatia, and Khakassia) were analyzed. Sera of non-infected donors were collected within a study of seasonal influenza in the Russian Federation. The sample collection sites were located near the flyways and breeding grounds of wild waterfowl. The performance of enzyme-linked immunosorbent assay (ELISA) for the collected sera included the usage of recombinant SARS-CoV-2 protein antigens: full-length nucleocapsid protein (CoVN), receptor binding domain (RBD) of S-protein and infection fragment of the S protein (S5-6). There were 183 (22.9%) sera reactive to the S5-6, 270 (33.8%) sera corresponding to the full-length N protein and 128 (16.2%) sera simultaneously reactive to both these proteins. Only 5 out of 799 sera had IgG antibodies reactive to the RBD. None of the sera exhibited neutralizing activity against the nCoV/Victoria/1/2020 SARS-CoV-2 strain in Vero E6 cell culture. The data obtained in this study suggest that some of the population of the analyzed regions of Russia had cross-reactive humoral immunity against SARS-CoV-2 before the COVID-19 pandemic started. Moreover, among individuals from relatively isolated regions, there were significantly fewer reliably cross-reactive sera. The possible significance of these data and impact of cross-immunity to SARS-CoV-2 on the prevalence and mortality of COVID-19 needs further assessment.
Project description:The World Health Organization has declared the ongoing outbreak of COVID-19, which is caused by a novel coronavirus SARS-CoV-2, a pandemic. There is currently a lack of knowledge about the antibody response elicited from SARS-CoV-2 infection. One major immunological question concerns antigenic differences between SARS-CoV-2 and SARS-CoV. We address this question by analyzing plasma from patients infected by SARS-CoV-2 or SARS-CoV and from infected or immunized mice. Our results show that, although cross-reactivity in antibody binding to the spike protein is common, cross-neutralization of the live viruses may be rare, indicating the presence of a non-neutralizing antibody response to conserved epitopes in the spike. Whether such low or non-neutralizing antibody response leads to antibody-dependent disease enhancement needs to be addressed in the future. Overall, this study not only addresses a fundamental question regarding antigenicity differences between SARS-CoV-2 and SARS-CoV but also has implications for immunogen design and vaccine development.
Project description:The World Health Organization has recently declared the ongoing outbreak of COVID-19, which is caused by a novel coronavirus SARS-CoV-2, as pandemic. There is currently a lack of knowledge in the antibody response elicited from SARS-CoV-2 infection. One major immunological question is concerning the antigenic differences between SARS-CoV-2 and SARS-CoV. We address this question by using plasma from patients infected by SARS-CoV-2 or SARS-CoV, and plasma obtained from infected or immunized mice. Our results show that while cross-reactivity in antibody binding to the spike protein is common, cross-neutralization of the live viruses is rare, indicating the presence of non-neutralizing antibody response to conserved epitopes in the spike. Whether these non-neutralizing antibody responses will lead to antibody-dependent disease enhancement needs to be addressed in the future. Overall, this study not only addresses a fundamental question regarding the antigenicity differences between SARS-CoV-2 and SARS-CoV, but also has important implications in vaccine.
Project description:For more than two years after the emergence of COVID-19 (Coronavirus Disease-2019), significant regional differences in morbidity persist. These differences clearly show lower incidence rates in several regions of the African and Asian continents. The work reported here aimed to test the hypothesis of a pre-pandemic natural immunity acquired by some human populations in central and western Africa, which would, therefore, pose the hypothesis of an original antigenic sin with a virus antigenically close to the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). To identify such pre-existing immunity, sera samples collected before the emergence of COVID-19 were tested to detect the presence of IgG reacting antibodies against SARS-CoV-2 proteins of major significance. Sera samples from French blood donors collected before the pandemic served as a control. The results showed a statistically significant difference of antibodies prevalence between the collected samples in Africa and the control samples collected in France. Given the novelty of our results, our next step consists in highlighting neutralizing antibodies to evaluate their potential for pre-pandemic protective acquired immunity against SARS-CoV-2. In conclusion, our results suggest that, in the investigated African sub-regions, the tested populations could have been potentially and partially pre-exposed, before the COVID-19 pandemic, to the antigens of a yet non-identified Coronaviruses.
Project description:Anecdotal evidence showed a negative correlation between Bacille Calmette-Guérin (BCG) vaccination and incidence of COVID-19. Incidence of the disease in children is much lower than in adults. It is hypothesized that BCG and other childhood vaccinations may provide some protection against SARS-CoV-2 infection through trained or adaptive immune responses. Here, we tested whether BCG, Pneumococcal, Rotavirus, Diphtheria, Tetanus, Pertussis, Hepatitis B, Haemophilus influenzae, Hepatitis B, Meningococcal, Measles, Mumps, and Rubella vaccines provide cross-reactive neutralizing antibodies against SARS-CoV-2 in BALB/c mice. Results indicated that none of these vaccines provided antibodies capable of neutralizing SARS-CoV-2 up to seven weeks post vaccination. We conclude that if such vaccines have any role in COVID-19 immunity, this role is not antibody-mediated.
Project description:Epitopes that are conserved among SARS-like coronaviruses are attractive targets for design of cross-reactive vaccines and therapeutics. CR3022 is a SARS-CoV neutralizing antibody to a highly conserved epitope on the receptor binding domain (RBD) on the spike protein that can cross-react with SARS-CoV-2, but with lower affinity. Using x-ray crystallography, mutagenesis, and binding experiments, we illustrate that of four amino acid differences in the CR3022 epitope between SARS-CoV-2 and SARS-CoV, a single mutation P384A fully determines the affinity difference. CR3022 does not neutralize SARS-CoV-2, but the increased affinity to SARS-CoV-2 P384A mutant now enables neutralization with a similar potency to SARS-CoV. We further investigated CR3022 interaction with the SARS-CoV spike protein by negative-stain EM and cryo-EM. Three CR3022 Fabs bind per trimer with the RBD observed in different up-conformations due to considerable flexibility of the RBD. In one of these conformations, quaternary interactions are made by CR3022 to the N-terminal domain (NTD) of an adjacent subunit. Overall, this study provides insights into antigenic variation and potential for cross-neutralizing epitopes on SARS-like viruses.
Project description:Epitopes that are conserved among SARS-like coronaviruses are attractive targets for design of cross-reactive vaccines and therapeutics. CR3022 is a SARS-CoV neutralizing antibody to a highly conserved epitope on the receptor binding domain (RBD) on the spike protein that is able to cross-react with SARS-CoV-2, but with lower affinity. Using x-ray crystallography, mutagenesis, and binding experiments, we illustrate that of four amino acid differences in the CR3022 epitope between SARS-CoV-2 and SARS-CoV, a single mutation P384A fully determines the affinity difference. CR3022 does not neutralize SARS-CoV-2, but the increased affinity to SARS-CoV-2 P384A mutant now enables neutralization with a similar potency to SARS-CoV. We further investigated CR3022 interaction with the SARS-CoV spike protein by negative-stain EM and cryo-EM. Three CR3022 Fabs bind per trimer with the RBD observed in different up-conformations due to considerable flexibility of the RBD. In one of these conformations, quaternary interactions are made by CR3022 to the N-terminal domain (NTD) of an adjacent subunit. Overall, this study provides insights into antigenic variation and potential cross-neutralizing epitopes on SARS-like viruses.
Project description:Patients infected with the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) can experience life-threatening respiratory distress, blood pressure dysregulation and thrombosis. This is thought to be associated with an impaired activity of angiotensin-converting enzyme-2 (ACE-2), which is the main entry receptor of SARS-CoV-2 and which also tightly regulates blood pressure by converting the vasoconstrictive peptide angiotensin II (AngII) to a vasopressor peptide. Here, we show that a significant proportion of hospitalized COVID-19 patients developed autoantibodies against AngII, whose presence correlates with lower blood oxygenation, blood pressure dysregulation, and overall higher disease severity. Anti-AngII antibodies can develop upon specific immune reaction to the SARS-CoV-2 proteins Spike or RBD, to which they can cross-bind, suggesting some epitope mimicry between AngII and Spike/RBD. These results provide important insights on how an immune reaction against SARS-CoV-2 can impair blood pressure regulation.
Project description:Early predictions forecasted large numbers of severe acute respiratory syndrome coronavirus (SARS-CoV-2) cases and associated deaths in Africa. To date, Africa has been relatively spared. Various hypotheses were postulated to explain the lower than anticipated impact on public health in Africa. However, the contribution of pre-existing immunity is yet to be investigated. In this study, the presence of antibodies against SARS-CoV-2 spike (S) and nucleocapsid (N) proteins in pre-pandemic samples from Africa, Europe, South and North America was examined by ELISA. The protective efficacy of N specific antibodies isolated from Central African donors was tested by in vitro neutralization and in a mouse model of SARS-CoV-2 infection. Antibodies against SARS-CoV-2 S and N proteins were rare in all populations except in Gabon and Senegal where N specific antibodies were prevalent. However, these antibodies failed to neutralize the virus either in vitro or in vivo. Overall, this study indicates that cross-reactive immunity against SARS-CoV-2 N protein was present in Africa prior to the pandemic. However, this pre-existing humoral immunity does not impact viral fitness in rodents suggesting that other human immune defense mechanisms could be involved. In Africa, seroprevalence studies using the N protein are over-estimating SARS-CoV-2 circulation.
Project description:Knowledge about the effect of vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on immunity reflected in the saliva is sparse. We examined the antibody response in saliva compared to that in serum 2 and 6 months after the first vaccination with the BNT162b2 vaccine. Four hundred fifty-nine health care professionals were included in a prospective observational study measuring antibody levels in saliva and corresponding serum samples at 2 and 6 months after BNT162b2 vaccination. Vaccinated, previously SARS-CoV-2-infected individuals (hybrid immunity) had higher IgG levels in saliva at 2 months than vaccinated, infection-naive individuals (P < 0.001). After 6 months, saliva IgG levels declined in both groups (P < 0.001), with no difference between groups (P = 0.37). Furthermore, serum IgG levels declined from 2 to 6 months in both groups (P < 0.001). IgG antibodies in saliva and serum correlated in individuals with hybrid immunity at 2 and 6 months (ρ = 0.58, P = 0.001, and ρ = 0.53, P = 0.052, respectively). In vaccinated, infection-naive individuals, a correlation was observed at 2 months (ρ = 0.42, P < 0.001) but not after 6 months (ρ = 0.14, P = 0.055). IgA and IgM antibodies were hardly detectable in saliva at any time point, regardless of previous infection. In serum, IgA was detected at 2 months in previously infected individuals. BNT162b2 vaccination induced a detectable IgG anti-SARS-CoV-2 RBD response in saliva at both 2 and 6 months after vaccination, being more prominent in previously infected than infection-naive individuals. However, a significant decrease in salivary IgG was observed after 6 months, suggesting a rapid decline in antibody-mediated saliva immunity against SARS-CoV-2, after both infection and systemic vaccination. IMPORTANCE Knowledge about the persistence of salivary immunity after SARS-CoV-2 vaccination is limited, and information on this topic could prove important for vaccine strategy and development. We hypothesized that salivary immunity would wane rapidly after vaccination. We measured anti-SARS-CoV-2 IgG, IgA, and IgM concentrations in saliva and serum in both previously infected and infection-naive individuals, 2 and 6 months after first vaccination with BNT162b2, in 459 hospital employees from Copenhagen University Hospital. We observed that IgG was the primary salivary antibody 2 months after vaccination in both previously infected and infection-naive individuals, but dropped significantly after 6 months. Neither IgA nor IgM was detectable in saliva at either time point. Findings indicate that salivary immunity against SARS-CoV-2 rapidly declines following vaccination in both previously infected and infection-naive individuals. We believe this study shines a light on the workings of salivary immunity after SARS-CoV-2 infection, which could prove relevant for vaccine development.