The application of decellularized nucleus pulposus matrix/chitosan with transforming growth factor β3 for nucleus pulposus tissue engineering.
Ontology highlight
ABSTRACT: Low back pain caused by intervertebral disc degeneration has become a global problem that seriously affects public health. The application of nucleus pulposus tissue engineering to disc degeneration has attracted increasing attention. A scaffold is important for nucleus pulposus tissue engineering, which provides a three-dimensional growth space with an appropriate biomechanical and biochemical microenvironment for seed cell differentiation and proliferation. In this study, a decellularized nucleus pulposus matrix/chitosan (DNPM/chitosan) hydrogel scaffold was prepared with crosslinker genipin. Nucleus pulposus stem cells (NPSCs) were cultured in hybrid hydrogels with or without transforming growth factor-β3 (TGF-β3) and then cell morphology, proliferation, and nucleus pulposus-related gene expression were analyzed. TGF-β3 was successfully incorporated into the DNPM/chitosan hydrogel and NPSCs grew well on both kinds of hydrogel. Moreover, gene expression of collagen-I, collagen-II, and aggrecan was enhanced in the DNPM/chitosan hydrogel with TGF-β3. These results indicate that the DNPM/chitosan hybrid hydrogel is a promising candidate scaffold for nucleus pulposus tissue engineering.
SUBMITTER: Kuang W
PROVIDER: S-EPMC8166999 | biostudies-literature | 2021 Jun
REPOSITORIES: biostudies-literature
ACCESS DATA