Project description:OBJECTIVES: To demonstrate the feasibility of GafChromic(®) XR-QA2 (ISP Corp., Wayne, NJ) as a dosemeter when performing measurements of the effective dose from three cone beam CT (CBCT) units and to compare the doses from examinations of three common dental clinical situations. A second aim was to compare the radiation doses for three digital panoramic units with the doses for the CBCT units. METHODS: The CBCT units used were Veraviewepocs 3De(®) (J Morita MFG Corp., Kyoto, Japan), ProMax(®) 3D (Planmeca, Helsinki, Finland) and NewTom VGi(®) (Quantitative Radiology, Verona, Italy). GafChromic XR-QA2 films were placed between the selected layers of the head and neck of a tissue-equivalent human skull (RANDO(®) phantom; The Phantom Laboratory, Salem, NY). The exposure parameters were set using the automatic exposure control function of the units. Depending on the availability, medium and smaller field of view (FOV) scanning modes were used. The effective dose was estimated using the 2007 International Commission on Radiological Protection formalism. RESULTS: The lowest effective dose of a CBCT unit was observed for ProMax 3D, FOV 4 × 5 cm (10 μSv), the highest for NewTom VGi, FOV 8 × 8 cm-high resolution (129 μSv). The range of effective doses for digital panoramic machines measured was 8-14 μSv. CONCLUSIONS: This study demonstrates the feasibility of using radiochromic films for dental CBCT and panoramic dosimetry.
Project description:OBJECTIVES: To examine the presence and morphologic characteristics of bifid mandibular canals (BMCs) and retromolar foramens (RFs) using cone beam CT (CBCT) and to determine their visualization on panoramic radiographs (PANs). METHODS: A sample of 225 CBCT examinations was analysed for the presence of BMCs, as well as length, height, diameter and angle. The diameter of the RF was also determined. Subsequently, corresponding PANs were analysed to determine whether the BMCs and RFs were visible or not. RESULTS: The BMCs were observed on CBCT in 83 out of the 225 patients (36.8%). With respect to gender, statistically significant differences were found in the number of BMCs. There were also significant differences in anatomical characteristics of the types of BMCs. Only 37.8% of the BMCs and 32.5% of the RFs identified on CBCT were also visible on PANs. The diameter had a significant effect on the capability of PANs to visualize BMCs and RFs (B = 0.791, p = 0.035; B = 1.900, p = 0.017, respectively). CONCLUSIONS: PANs are unable to sufficiently identify BMCs and RFs. The diameter of these anatomical landmarks represents a relevant factor for visualization on PANs. Pre-operative images using only PANs may lead to underestimation of the presence of BMCs and to surgical complications and anaesthetic failures, which could have been avoided. For true determination of BMCs, a CBCT device should be considered better than a PAN.
Project description:PurposeTo provide initial assessment of image quality and dose for a cone-beam computed tomographic (CT) scanner dedicated to extremity imaging.Materials and methodsA prototype cone-beam CT scanner has been developed for imaging the extremities, including the weight-bearing lower extremities. Initial technical assessment included evaluation of radiation dose measured as a function of kilovolt peak and tube output (in milliampere seconds), contrast resolution assessed in terms of the signal difference-to-noise ratio (SDNR), spatial resolution semiquantitatively assessed by using a line-pair module from a phantom, and qualitative evaluation of cadaver images for potential diagnostic value and image artifacts by an expert CT observer (musculoskeletal radiologist).ResultsThe dose for a nominal scan protocol (80 kVp, 108 mAs) was 9 mGy (absolute dose measured at the center of a CT dose index phantom). SDNR was maximized with the 80-kVp scan technique, and contrast resolution was sufficient for visualization of muscle, fat, ligaments and/or tendons, cartilage joint space, and bone. Spatial resolution in the axial plane exceeded 15 line pairs per centimeter. Streaks associated with x-ray scatter (in thicker regions of the patient--eg, the knee), beam hardening (about cortical bone--eg, the femoral shaft), and cone-beam artifacts (at joint space surfaces oriented along the scanning plane--eg, the interphalangeal joints) presented a slight impediment to visualization. Cadaver images (elbow, hand, knee, and foot) demonstrated excellent visibility of bone detail and good soft-tissue visibility suitable to a broad spectrum of musculoskeletal indications.ConclusionA dedicated extremity cone-beam CT scanner capable of imaging upper and lower extremities (including weight-bearing examinations) provides sufficient image quality and favorable dose characteristics to warrant further evaluation for clinical use.
Project description:Background & purposeFour dimensional Cone beam CT (CBCT) has many potential benefits for radiotherapy but suffers from poor image quality, long acquisition times, and/or long reconstruction times. In this work we present a fast iterative reconstruction algorithm for 4D reconstruction of fast acquisition cone beam CT, as well as a new method for temporal regularization and compare to state of the art methods for 4D CBCT.Materials & methodsRegularization parameters for the iterative algorithms were found automatically via computer optimization on 60 s acquisitions using the XCAT phantom. Nineteen lung cancer patients were scanned with 60 s arcs using the onboard image on a Varian trilogy linear accelerator. Images were reconstructed using an accelerated ordered subset algorithm. A frequency based temporal regularization algorithm was developed and compared to the McKinnon-Bates algorithm, 4D total variation and prior images compressed sensing (PICCS).ResultsAll reconstructions were completed in 60 s or less. The proposed method provided a structural similarity of 0.915, compared with 0.786 for the classic McKinnon-bates method. For the patient study, it provided fewer image artefacts than PICCS, and better spatial resolution than 4D TV.ConclusionFour dimensional iterative CBCT reconstruction was done in less than 60 s, demonstrating the clinical feasibility. The frequency based method outperformed 4D total variation and PICCS on the simulated data, and for patients allowed for tumor location based on 60 s acquisitions, even for slowly breathing patients. It should thus be suitable for routine clinical use.
Project description:Background and purposeThe limited image quality in Cone Beam CT (CBCT) stemming primarily from scattered radiation hinders accurate CBCT based dose calculation in radiotherapy. We investigated the use of a stoichiometric calibration for dose calculation on CBCT images of lung cancer patients.Materials and methodsCBCT calibrations were performed with thorax scan protocols, using a phantom with approximately the diameter of an average human thorax and a central cavity simulating the thoracic cavity. Thus scatter conditions resembling those in clinical thorax CBCT scans were simulated. A published stoichiometric parametrization was used. A treatment plan was simulated on CBCT and CT scans of an anthropomorphic phantom, the dose distributions were calculated, and clinically relevant DVH parameters were compared. Twelve lung cancer patients had surveillance CT scans (s-CT) taken twice during their treatment course in addition to daily setup CBCTs. Dose calculations were performed on the s-CTs and the corresponding CBCTs taken on the same day, and DVH parameters were compared.ResultsEighty percent of CBCT DVH parameters found for the phantom were within ±1% of CT doses, and 98% were within ±3%. For patients, the median CT/CBCT dose difference was within ±2%, and 98% of DVH parameters were within ±4%. Minimum dose to the tumor was underestimated (median 1.9%) on CBCT, while maximum doses to most organs at risk were slightly overestimated.ConclusionDirect dose calculations on CBCTs of lung cancer patients were feasible within ∼4% accuracy using a simple calibration method, which is easily implemented in a clinical setting.
Project description:To determine the mean and range of location-averaged breast skin thickness using high-resolution dedicated breast CT for use in Monte Carlo-based estimation of normalized glandular dose coefficients.This study retrospectively analyzed image data from a clinical study investigating dedicated breast CT. An algorithm similar to that described by Huang et al. ["The effect of skin thickness determined using breast CT on mammographic dosimetry," Med. Phys. 35(4), 1199-1206 (2008)] was used to determine the skin thickness in 137 dedicated breast CT volumes from 136 women. The location-averaged mean breast skin thickness for each breast was estimated and the study population mean and range were determined. Pathology results were available for 132 women, and were used to investigate if the distribution of location-averaged mean breast skin thickness varied with pathology. The effect of surface fitting to account for breast curvature was also studied.The study mean (± interbreast SD) for breast skin thickness was 1.44 ± 0.25 mm (range: 0.87-2.34 mm), which was in excellent agreement with Huang et al. Based on pathology, pair-wise statistical analysis (Mann-Whitney test) indicated that at the 0.05 significance level, there were no significant difference in the location-averaged mean breast skin thickness distributions between the groups: benign vs malignant (p = 0.223), benign vs hyperplasia (p = 0.651), hyperplasia vs malignant (p = 0.229), and malignant vs nonmalignant (p = 0.172).Considering this study used a different clinical prototype system, and the study participants were from a different geographical location, the observed agreement between the two studies suggests that the choice of 1.45 mm thick skin layer comprising the epidermis and the dermis for breast dosimetry is appropriate. While some benign and malignant conditions could cause skin thickening, in this study cohort the location-averaged mean breast skin thickness distributions did not differ significantly with pathology. The study also underscored the importance of considering breast curvature in estimating breast skin thickness.
Project description:To measure and investigate the improvement of microcalcification (MC) visibility in cone beam breast CT with a high pitch (75 μm), thick (500 μm) scintillator CMOS/CsI flat panel detector (Dexela 2923, Perkin Elmer).Aluminum wires and calcium carbonate grains of various sizes were embedded in a paraffin cylinder to simulate imaging of calcifications in a breast. Phantoms were imaged with a benchtop experimental cone beam CT system at various exposure levels. In addition to the Dexela detector, a high pitch (50 μm), thin (150 μm) scintillator CMOS/CsI flat panel detector (C7921CA-09, Hamamatsu Corporation, Hamamatsu City, Japan) and a widely used low pitch (194 μm), thick (600 μm) scintillator aSi/CsI flat panel detector (PaxScan 4030CB, Varian Medical Systems) were also used in scanning for comparison. The images were independently reviewed by six readers (imaging physicists). The MC visibility was quantified as the fraction of visible MCs and measured as a function of the estimated mean glandular dose (MGD) level for various MC sizes and detectors. The modulation transfer functions (MTFs) and detective quantum efficiencies (DQEs) were also measured and compared for the three detectors used.The authors have demonstrated that the use of a high pitch (75 μm) CMOS detector coupled with a thick (500 μm) CsI scintillator helped make the smaller 150-160, 160-180, and 180-200 μm MC groups more visible at MGDs up to 10.8, 9, and 10.8 mGy, respectively. It also made the larger 200-212 and 212-224 μm MC groups more visible at MGDs up to 7.2 mGy. No performance improvement was observed for 224-250 μm or larger size groups. With the higher spatial resolution of the Dexela detector based system, the apparent dimensions and shapes of MCs were more accurately rendered. The results show that with the aforementioned detector, a 73% visibility could be achieved in imaging 160-180 μm MCs as compared to 28% visibility achieved by the low pitch (194 μm) aSi/CsI flat panel detector. The measurements confirm that the Hamamatsu detector has the highest MTF, followed by the Dexel detector, and then the Varian detector. However, the Dexela detector, with its thick (500 μm) CsI scintillator and low noise level, has the highest DQE at all frequencies, followed by the Varian detector, and then the Hamamatsu detector. The findings on the MC visibility correlated well with the differences in MTFs, noise power spectra, and DQEs measured for these three detectors.The authors have demonstrated that the use of the CMOS type Dexela detector with its high pitch (75 μm) and thick (500 μm) CsI scintillator could help improve the MC visibility. However, the improvement depended on the exposure level and the MC size. For imaging larger MCs or scanning at high exposure levels, there was little advantage in using the Dexela detector as compared to the aSi type Varian detector. These findings correlate well with the higher measured DQEs of the Dexela detector, especially at higher frequencies.
Project description:BackgroundMinimally invasive surgery (MIS) for evacuation of spontaneous intracerebral hemorrhage (ICH) has shown promise but there remains a need for intraoperative performance assessment considering the wide range of evacuation effectiveness. In this feasibility study, we analyzed the benefit of intraoperative 3-dimensional imaging during navigated endoscopy-assisted ICH evacuation by mechanical clot fragmentation and aspiration.Methods18 patients with superficial or deep supratentorial ICH underwent MIS for clot evacuation followed by intraoperative computerized tomography (iCT) or cone-beam CT (CBCT) imaging. Eligibility for MIS required (a) availability of intraoperative iCT or CBCT, (b) spontaneous lobar or deep ICH without vascular pathology, (c) a stable ICH volume (20-90 ml), (d) a reduced level of consciousness (GCS 5-14), and (e) a premorbid mRS ≤ 1. Demographic, clinical, and radiographic patient data were analyzed by two independent observers.ResultsNine female and 9 male patients with a median age of 76 years (42-85) presented with an ICH score of 3 (1-4), GCS of 10 (5-14) and ICH volume of 54 ± 26 ml. Clot fragmentation and aspiration was feasible in all cases and intraoperative imaging determined an overall evacuation rate of 80 ± 19% (residual hematoma volume: 13 ± 17 ml; p < 0.0001 vs. Pre-OP). Based on the intraoperative imaging results, 1/3rd of all patients underwent an immediate re-aspiration attempt. No patient experienced hemorrhagic complications or required conversion to open craniotomy. However, routine postoperative CT imaging revealed early hematoma re-expansion with an adjusted evacuation rate of 59 ± 30% (residual hematoma volume: 26 ± 37 ml; p < 0.001 vs. Pre-OP).ConclusionsRoutine utilization of iCT or CBCT imaging in MIS for ICH permits direct surgical performance assessment and the chance for immediate re-aspiration, which may optimize targeting of an ideal residual hematoma volume and reduce secondary revision rates.
Project description:On-board 4D cone beam CT (4DCBCT) offers respiratory phase-resolved volumetric imaging, and improves the accuracy of target localization in image guided radiation therapy. However, the clinical utility of this technique has been greatly impeded by its degraded image quality, prolonged imaging time, and increased imaging dose. The purpose of this letter is to develop a novel iterative 4DCBCT reconstruction method for improved image quality, increased imaging speed, and reduced imaging dose.The essence of this work is to introduce the spatiotemporal tensor framelet (STF), a high-dimensional tensor generalization of the 1D framelet for 4DCBCT, to effectively take into account of highly correlated and redundant features of the patient anatomy during respiration, in a multilevel fashion with multibasis sparsifying transform. The STF-based algorithm is implemented on a GPU platform for improved computational efficiency. To evaluate the method, 4DCBCT full-fan scans were acquired within 30 s, with a gantry rotation of 200°; STF is also compared with a state-of-art reconstruction method via spatiotemporal total variation regularization.Both the simulation and experimental results demonstrate that STF-based reconstruction achieved superior image quality. The reconstruction of 20 respiratory phases took less than 10 min on an NVIDIA Tesla C2070 GPU card. The STF codes are available at https://sites.google.com/site/spatiotemporaltensorframelet.By effectively utilizing the spatiotemporal coherence of the patient anatomy among different respiratory phases in a multilevel fashion with multibasis sparsifying transform, the proposed STF method potentially enables fast and low-dose 4DCBCT with improved image quality.
Project description:OBJECTIVES::To determine the optimized kV setting for a narrow detector cone-beam CT (CBCT) unit. METHODS::Clinical (CL) and quantitative (QUANT) evaluations of image quality were performed using an anthropomorphic phantom. Technical (TECH) evaluation was performed with a polymethyl methacrylate phantom. Images were obtained using a PaX-i3D Green CBCT (Vatech, Hwaseong, Korea) device, with a large 21 × 19?and a medium 12 × 9?cm field of view (FOV), and high-dose (HD-ranging from 85 to 110 kV) and low-dose (LD-ranging from 75 to 95 kV) protocols, totaling four groups (21 × 19?cm HD, 21 × 19?cm LD, 12 × 9?cm HD, 12 × 9?cm LD). The radiation dose within each group was fixed by adapting the mA according to a predetermined dose-area product. For CL evaluation, three observers assessed images based on overall quality, sharpness, contrast, artefacts, and noise. For QUANT evaluation, mean gray value shift, % increase of standard deviation (SD), % of beam hardening and contrast-to-noise ratio (CNR) were calculated. For TECH evaluation, segmentation accuracy, CNR, metal artefact SD, metal object area, and sharpness were measured. Representative parameters were chosen for CL, QUANT, and TECH evaluations to determine the optimal kV based on biplot graphs. kV values of the same protocol were compared by the bootstrapping approach. The ones that had statistical differences with the best kV were considered as worse quality. RESULTS::Overall, kV values within the same group showed similar quality (p > 0.05), except for 110 kV in 21 × 19?cm HD and 85 kV in 12 × 9?cm HD of CL score; also 85, 90 kV in 21 × 19?cm HD and 75, 80 kV in 21 × 19?cm LD of QUANT score which were worse (p < 0.05). CONCLUSION::At a constant dose, low and high kV protocols yield acceptable image quality for a narrow-detector CBCT unit.