Project description:Torque teno viruses (TTVs) are a group of viruses with small, circular DNA genomes. Members of this family are thought to ubiquitously infect humans, although causal disease associations are currently lacking. At present, there is no understanding of how infection with this diverse group of viruses is so prevalent. Using a combined computational and synthetic approach, we predict and identify miRNA-coding regions in diverse human TTVs and provide evidence for TTV miRNA production in vivo. The TTV miRNAs are transcribed by RNA polymerase II, processed by Drosha and Dicer, and are active in RISC. A TTV mutant defective for miRNA production replicates as well as wild type virus genome; demonstrating that the TTV miRNA is dispensable for genome replication in a cell culture model. We demonstrate that a recombinant TTV genome is capable of expressing an exogenous miRNA, indicating the potential utility of TTV as a small RNA vector. Gene expression profiling of host cells identifies N-myc (and STAT) interactor (NMI) as a target of a TTV miRNA. NMI transcripts are directly regulated through a binding site in the 3'UTR. SiRNA knockdown of NMI contributes to a decreased response to interferon signaling. Consistent with this, we show that a TTV miRNA mediates a decreased response to IFN and increased cellular proliferation in the presence of IFN. Thus, we add Annelloviridae to the growing list of virus families that encode miRNAs, and suggest that miRNA-mediated immune evasion can contribute to the pervasiveness associated with some of these viruses.
Project description:The present study analyzed the presence of human Torque Teno virus (TTV) in hospitalized patients from different departments. In total, 378 serum specimens were collected from the patients (171 with cardiovascular disease, 192 with tumor and 15 with gastroenteritis) and analyzed by ELISA and nest-polymerase chain reaction (PCR) to detect the presence of TTV. The results showed that 64 specimens (17%) were TTV positive from detection with the human ELISA kit, and the patients aged <30 years have a higher prevalence. TTV in males was more common than in female patients. In addition, nest-PCR was used to detect TTV within different phylogenetic groups among the 64 specimens, and the results showed that groups 1 (TA278 strain), 4 (KC009) and 5 (CT39) were much more prevalent than groups 2 (PMV isolate) and 3 (11 genotypes) in the different departmental patients.
Project description:Genus Iotatorquevirus consists of 2 species, Torque teno sus virus 1a and Torque teno sus virus 1b, which are ubiquitous in swine populations, and are widely reported in association with porcine circovirus associated disease (PCVAD). To evaluate the relationship with PCVAD, 100 formalin-fixed paraffin-embedded tissue samples were used to detect both Iotatorquevirus species by nested PCR and sequencing. Sixty-eight PCVAD cases were selected as well as 32 porcine circovirus type 2 (PCV2) non-affected cases. Overall, 33 of the 100 cases were positive for Torque teno sus virus 1a and 8 of 100 were positive for Torque teno sus virus 1b. Only 24 of 68 (35%) PCVAD cases were positive for Torque teno sus virus 1a; 39% (9/23) of post-weaning multisystemic wasting syndrome, and 33% (15/45) of PCV2-associated reproductive failure cases. Among PCV2 non-affected cases, 28% were positive for Torque teno sus virus 1a and 6% were positive for Torque teno sus virus 1b. Torque teno sus virus 1b was not detected in PCV2-associated reproductive failure cases. Regardless of the PCV2-status, a lower frequency of both Iotatorquevirus species was found than depicted in other reports and there was no statistical relationship with PCVAD (χ 2 < 0.01). Given the worldwide genomic variability of Iotatorquevirus species, it is feasible that species prevalent in Mexico share a lower nucleotide sequence identity, leading to different pathogenic potential.
Project description:Human torque teno viruses (TTVs) are a diverse group of small nonenveloped viruses with circular, single-stranded DNA genomes. These elusive anelloviruses are harbored in the blood stream of most humans and have thus been considered part of the normal flora. Whether the primary infection as a rule take(s) place before or after birth has been debated. The aim of our study was to determine the time of TTV primary infection and the viral load and strain variations during infancy and follow-up for up to 7 years. TTV DNAs were quantified in serial serum samples from 102 children by a pan-TTV quantitative PCR, and the amplicons from representative time points were cloned and sequenced to disclose the TTV strain diversity. We detected an unequivocal rise in TTV-DNA prevalence, from 39% at 4 months of age to 93% at 2 years; all children but one, 99%, became TTV-DNA positive before age 4 years. The TTV-DNA quantities ranged from 5 × 101 to 4 × 107 copies/mL, both within and between the children. In conclusion, TTV primary infections occur mainly after birth, and increase during the first two years with high intra- and interindividual variation in both DNA quantities and virus strains.
Project description:BACKGROUND: Although human torque teno viruses (TTVs) were first discovered in 1997, still many associated aspects are not clarified yet. The viruses reveal a remarkable heterogeneity and it is possible that some genotypes are more pathogenic than others. The identification of all genotypes is essential to confirm previous pathogenicity data, and an unbiased search for novel viruses is needed to identify TTVs that might be related to disease. METHOD: The virus discovery technique VIDISCA-454 was used to screen serum of 55 HIV-1 positive injecting drug users, from the Amsterdam Cohort Studies, in search for novel blood-blood transmittable viruses which are undetectable via normal diagnostics or panvirus-primer PCRs. RESULTS: A novel torque teno mini virus (TTMV) was identified in two patients and the sequence of the full genomes were determined. The virus is significantly different from the known TTMVs (< 40% amino acid identity in ORF1), yet it contains conserved characteristics that are also present in other TTMVs. The virus is chronically present in both patients, and these patients both suffered from a pneumococcal pneumonia during follow up and had extremely low B-cells counts. CONCLUSION: We describe a novel TTMV which we tentatively named TTMV-13. Further research is needed to address the epidemiology and pathogenicity of this novel virus.
Project description:Torque teno sus virus (TTSuV), a member of the family Anelloviridae, is a single-stranded, circular DNA virus, widely distributed in swine populations. Presently, two TTSuV genogroups are recognized: Torque teno sus virus 1 (TTSuV1) and Torque teno sus virus 2 (TTSuV2). TTSuV genomes have been found in commercial vaccines for swine, enzyme preparations and other drugs containing components of porcine origin. However, no studies have been made looking for TTSuV in cell cultures. In the present study, a search for TTSuV genomes was carried out in cell culture lineages, in sera used as supplement for cell culture media as well as in trypsin used for cell disaggregation. DNA obtained from twenty-five cell lineages (ten from cultures in routine multiplication and fifteen from frozen ampoules), nine samples of sera used in cell culture media and five batches of trypsin were examined for the presence of TTSuV DNA. Fifteen cell lineages, originated from thirteen different species contained amplifiable TTSuV genomes, including an ampoule with a cell lineage frozen in 1985. Three cell lineages of swine origin were co-infected with both TTSuV1 and TTSuV2. One batch of trypsin contained two distinct TTSuV1 plus one TTSuV2 genome, suggesting that this might have been the source of contamination, as supported by phylogenetic analyses of sequenced amplicons. Samples of fetal bovine and calf sera used in cell culture media did not contain amplifiable TTSuV DNA. This is the first report on the presence of TTSuV as contaminants in cell lineages. In addition, detection of the viral genome in an ampoule frozen in 1985 provides evidence that TTSuV contamination is not a recent event. These findings highlight the risks of TTSuV contamination in cell cultures, what may be source for contamination of biological products or compromise results of studies involving in vitro multiplied cells.
Project description:AIM:To investigate the prevalence and genotype distribution of Torque teno virus (TTV) in patients with different liver diseases and chronic renal failure treated at a referral hospital in North India. METHODS:Whereas prevalence of TTV was based on amplification of conserved region of ORF2 of TTV genome, the genotyping of TTV was carried out using restriction fragment length polymorphism (RFLP) procedure on the N22 region of ORF1. RESULTS:TTV-DNA was detected in 137 of 513 (26.7%) patients with liver diseases and 38 of 65 (58.5%) patients with chronic renal failure. TTV was also detected in 27% of healthy controls. The sequence analysis of the PCR product from 10 randomly selected cases failed to show a significant sequence divergence when compared with that of the TRM1 isolate of TTV genotype 1. The results of genotyping in 55 randomly selected patients showed the presence of genotype 1 (G1) in 53 (96.4%) and genotype 2 (G2) in 2 cases (3.6%), respectively. Other genotypes were not identified in this patient subgroup, suggesting that G1 is predominant in this area. The results of genotyping by RFLP were also supported by phylogenetic tree analysis, where G1 was found to be the major genotype. CONCLUSION:These results indicate that TTV is moderately present in Indian patients, with G1 to be the major genotype in North India. The pathogenicity and etiological role of TTV in different diseases is still a question mark and warrant further studies.