Project description:Acute myeloid leukemia (AML) is a heterogenous disease associated with distinct genetic and molecular abnormalities. Somatic mutations result in dysregulation of intracellular signaling pathways, epigenetics, and apoptosis of the leukemia cells. Understanding the basis for the dysregulated processes provides the platform for the design of novel targeted therapy for AML patients. The effort to devise new targeted therapy has been helped by recent advances in methods for high-throughput genomic screening and the availability of computer-assisted techniques for the design of novel agents that are predicted to specifically inhibit the mutant molecules involved in these intracellular events. In this review, we will provide the scientific basis for targeting the dysregulated molecular mechanisms and discuss the agents currently being investigated, alone or in combination with chemotherapy, for treating patients with AML. Successes in molecular targeting will ultimately change the treatment paradigm for the disease.
Project description:Nucleosides and their analogues constitute an essential family of anticancer drugs. DNA has been the presumptive target of the front-line prodrug for acute myeloid leukemia (AML), cytarabine (ara-C), since the 1980s. Here, the biomolecular targeting of ara-C was evaluated in primary white blood cells using the ara-C mimic "AzC" and azide-alkyne "click" reactions. Fluorescent staining and microscopy revealed that metabolic incorporation of AzC into primary white blood cells was unexpectedly enhanced by the DNA polymerase inhibitor aphidicholine. According to RNaseH digestion and pull-down-and-release experiments, AzC was incorporated into short RNA fragments bound to DNA in peripheral blood monocytes (PBMCs) collected from all six healthy human donors tested. Samples from 22 AML patients (French-American-British classes M4 and M5) exhibited much more heterogeneity, with 27% incorporating AzC into RNA and 55% into DNA. The overall survival of AML patients whose samples incorporated AzC into RNA was approximately 3-fold higher as compared to that of the DNA cohort (p ≤ 0.056, χ2 = 3.65). These results suggest that the RNA primers of DNA synthesis are clinically favorable targets of ara-C, and that variable incorporation of nucleoside drugs into DNA versus RNA may enable future patient stratification into treatment-specific subgroups.
Project description:Drugs targeting metabolism have formed the backbone of therapy for some cancers. We sought to identify new such targets in acute myeloid leukemia (AML). The one-carbon folate pathway, specifically methylenetetrahydrofolate dehydrogenase-cyclohydrolase 2 (MTHFD2), emerged as a top candidate in our analyses. MTHFD2 is the most differentially expressed metabolic enzyme in cancer versus normal cells. Knockdown of MTHFD2 in AML cells decreased growth, induced differentiation, and impaired colony formation in primary AML blasts. In human xenograft and MLL-AF9 mouse leukemia models, MTHFD2 suppression decreased leukemia burden and prolonged survival. Based upon primary patient AML data and functional genomic screening, we determined that FLT3-ITD is a biomarker of response to MTHFD2 suppression. Mechanistically, MYC regulates the expression of MTHFD2, and MTHFD2 knockdown suppresses the TCA cycle. This study supports the therapeutic targeting of MTHFD2 in AML.
Project description:The FMS-like tyrosine kinase 3 (FLT3) pathway has an important role in cellular proliferation, survival, and differentiation. Acute myeloid leukemia (AML) patients with mutated FLT3 have a large disease burden at presentation and a dismal prognosis. A number of FLT3 inhibitors have been developed over the years. The first-generation inhibitors are largely non-specific, while the second-generation inhibitors are more specific and more potent. These inhibitors are used to treat patients with FLT3-mutated AML in virtually all disease settings including induction, consolidation, maintenance, relapse, and after hematopoietic cell transplantation (HCT). In this article, we will review the use of FLT3 inhibitors in AML.
Project description:Aberrant FLT3 receptor signaling is common in acute myeloid leukemia (AML) and has important implications for the biology and clinical management of the disease. Patients with FLT3-mutated AML frequently present with critical illness, are more likely to relapse after treatment, and have worse clinical outcomes than their FLT3 wild type counterparts. The clinical management of FLT3-mutated AML has been transformed by the development of FLT3 inhibitors, which are now in use in the frontline and relapsed/refractory settings. However, many questions regarding the optimal approach to the treatment of these patients remain. In this paper, we will review the rationale for targeting the FLT3 receptor in AML, the impact of FLT3 mutation on patient prognosis, the current standard of care approaches to FLT3-mutated AML management, and the diverse array of FLT3 inhibitors in use and under investigation. We will also explore new opportunities and strategies for targeting the FLT3 receptor. These include targeting the receptor in patients with non-canonical FLT3 mutations or wild type FLT3, pairing FLT3 inhibitors with other novel therapies, using minimal residual disease (MRD) testing to guide the targeting of FLT3, and novel immunotherapeutic approaches.
Project description:BackgroundThe aim of this study was to analyze the level of CD33 expression in patients with newly diagnosed AML and determine its correlation with clinical characteristics.MethodsSamples were collected for analysis from AML patients at diagnosis. We evaluated the level of CD33 expression by flow cytometry analysis of bone marrow. Chi-square or t- tests were used to assess the association between the high and low CD33 expression groups. Survival curves were generated by the Kaplan-Meier and Cox regression model method.ResultsIn this study we evaluated the level of CD33 expression in de novo patients diagnosed from November 2013 until January 2019. The mean value of 73.4% was used as the cutoff for the two groups. Statistical analysis revealed that 53 of the 86 (61.2%) AML patients were above the mean. Although there was no statistical significance between CD33 expression level and gene mutation, FLT3 mutation (P = 0.002) and NPM1 mutation (P = 0.001) were more likely to be seen in the high CD33 group. The overall survival (OS) was worse in the high CD33 group (39.0 m vs. 16.7 m, x2 = 13.06, P < 0.001). The Cox survival regression display that the CD33 is independent prognostic marker (HR =0.233,p = 0.008). Univariate analysis showed that the high expression of CD33 was an unfavorable prognostic factor. Of the 86 patients, CD33-high was closely related to the patients with normal karyotype (x2 = 4.891,P = 0.027), high white blood cell count (WBC, t = 2.804, P = 0.007), and a high ratio of primitive cells (t = 2.851, P = 0.005).ConclusionsThese findings provide a strong rationale for targeting CD33 in combination with chemotherapy, which can be considered a promising therapeutic strategy for AML.
Project description:The bone marrow microenvironment plays a critical role in the development, progression, and relapse of acute myeloid leukemia (AML). Similar to normal hematopoietic stem cells, AML blasts express receptors on their surface, allowing them to interact with specific components of the marrow microenvironment. These interactions contribute to both chemotherapy resistance and disease relapse. Preclinical studies and early phase clinical trials have demonstrated the potential for targeting the tumor-microenvironment interactions in AML. Agents currently under investigation include hypoxia-inducible agents and inhibitors of CXCR4 and adhesion molecules such as VLA-4 and E-selectin.
Project description:The cancer metabolic reprogramming allows the maintenance of tumor proliferation, expansion and survival by altering key bioenergetics, biosynthetic and redox functions to meet the higher demands of tumor cells. In addition, several metabolites are also needed to perform signaling functions that further promote tumor growth and progression. These metabolic alterations have been exploited in different cancers, including acute myeloid leukemia, as novel therapeutic strategies both in preclinical models and clinical trials. Here, we review the complexity of acute myeloid leukemia (AML) metabolism and discuss how therapies targeting different aspects of cellular metabolism have demonstrated efficacy and how they provide a therapeutic window that should be explored to target the metabolic requirements of AML cells.
Project description:One of the distinguishing properties of hematopoietic stem cells is their ability to self-renew. Since self-renewal is important for the continuous replenishment of the hematopoietic stem cell pool, this property is often hijacked in blood cancers. Acute myeloid leukemia (AML) is believed to be arranged in a hierarchy, with self-renewing leukemia stem cells (LSCs) giving rise to the bulk tumor. Some of the earliest characterizations of LSCs were made in seminal studies that assessed the ability of prospectively isolated candidate AML stem cells to repopulate the entire heterogeneity of the tumor in mice. Further studies indicated that LSCs may be responsible for chemotherapy resistance and therefore act as a reservoir for secondary disease and leukemia relapse. In recent years, a number of studies have helped illuminate the complexity of clonality in bone marrow pathologies, including leukemias. Many features distinguishing LSCs from normal hematopoietic stem cells have been identified, and these studies have opened up diverse avenues for targeting LSCs, with an impact on the clinical management of AML patients. This review will discuss the role of self-renewal in AML and its implications, distinguishing characteristics between normal and leukemia stem cells, and opportunities for therapeutic targeting of AML LSCs.