Ontology highlight
ABSTRACT: Purpose
Previous studies have shown that Aβ-amyloid (Aβ) likely promotes tau to spread beyond the medial temporal lobe. However, the Aβ levels necessary for tau to spread in the neocortex is still unclear.Methods
Four hundred sixty-six participants underwent tau imaging with [18F]MK6420 and Aβ imaging with [18F]NAV4694. Aβ scans were quantified on the Centiloid (CL) scale with a cut-off of 25 CL for abnormal levels of Aβ (A+). Tau scans were quantified in three regions of interest (ROI) (mesial temporal (Me); temporoparietal neocortex (Te); and rest of neocortex (R)) and four mesial temporal region (entorhinal cortex, amygdala, hippocampus, and parahippocampus). Regional tau thresholds were established as the 95%ile of the cognitively unimpaired A- subjects. The prevalence of abnormal tau levels (T+) along the Centiloid continuum was determined.Results
The plots of prevalence of T+ show earlier and greater increase along the Centiloid continuum in the medial temporal area compared to neocortex. Prevalence of T+ was low but associated with Aβ level between 10 and 40 CL reaching 23% in Me, 15% in Te, and 11% in R. Between 40 and 70 CL, the prevalence of T+ subjects per CL increased fourfold faster and at 70 CL was 64% in Me, 51% in Te, and 37% in R. In cognitively unimpaired, there were no T+ in R below 50 CL. The highest prevalence of T+ were found in the entorhinal cortex, reaching 40% at 40 CL and 80% at 60 CL.Conclusion
Outside the entorhinal cortex, abnormal levels of cortical tau on PET are rarely found with Aβ below 40 CL. Above 40 CL prevalence of T+ accelerates in all areas. Moderate Aβ levels are required before abnormal neocortical tau becomes detectable.
SUBMITTER: Dore V
PROVIDER: S-EPMC8175299 | biostudies-literature |
REPOSITORIES: biostudies-literature