Mutational Landscape of PI3K-AKT-mTOR Pathway in Breast Cancer: Implications for Targeted Therapeutics.
Ontology highlight
ABSTRACT: Background: Comprehensive analysis of PI3K-AKT-mTOR pathway gene alterations in breast cancer may be helpful for targeted therapy. Methods: We performed targeted sequencing using a panel of 520 cancer-related genes to investigate gene alterations in the PI3K-AKT-mTOR pathway from 589 consecutive Chinese women diagnosed with stage I-III breast cancer. Analyses of overall survival (OS) were performed using the publicly available clinical and genomic data from METABRIC. Results: PI3K-AKT-mTOR pathway gene alterations were detected in 62.6% (369/589) of our cohort. The most commonly altered genes were PIK3CA (45%), PTEN (7.5%), AKT1 (5.9 %), PIK3R1 (2.7%), and PIK3CG (2%). Four PIK3CA mutations (E545K, H1047R, E542K, and H1047L) were detected in all the breast cancer molecular subtypes. Seven PIK3CA mutations (E545G, E418_L422delinsV, E726K, E110del, G1049R, G118D, and D350G) were only detected in HR+ subtypes. Two PIK3CA mutations (C420R and N345K) were only detected in non-triple-negative subtypes. Most cases with PTEN mutation were HR+/HER2- subtype (77.3%), followed by triple-negative subtype (18.2%). In the METABRIC breast cancer dataset, no significant OS difference was observed between the PIK3CA-mutant and wild-type groups. However, patients with multiple PIK3CA mutations (mOS: 131 vs. 159 months, P= 0.029), or PIK3CA mutations located in the C2 domain had significantly shorter OS (mOS, 130 vs. 154 months, P=0.020) than those without the mutations. Conclusions: Our study reveals the heterogeneity in PI3K-AKT-mTOR pathway among the breast cancer molecular subtypes in our cohort. Moreover, the number and specific sites of PIK3CA mutations have distinct prognostic impact.
SUBMITTER: Xiao W
PROVIDER: S-EPMC8176410 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA