Unknown

Dataset Information

0

The molecular and epigenetic mechanisms of innate lymphoid cell (ILC) memory and its relevance for asthma.


ABSTRACT: Repetitive exposure of Rag1-/- mice to the Alternaria allergen extract generated a form of memory that elicited an asthma-like response upon a subthreshold recall challenge 3-15 wk later. This memory was associated with lung ICOS+ST2+ ILC2s. Genetic, pharmacologic, and antibody-mediated inhibition and adoptive transfer established an essential role for ILC2s in memory-driven asthma. ATAC-seq demonstrated a distinct epigenetic landscape of memory ILC2s and identified Bach2 and AP1 (JunD and Fosl2) motifs as major drivers of altered gene accessibility. scRNA-seq, gene knockout, and signaling studies suggest that repetitive allergenic stress induces a gene repression program involving Nr4a2, Zeb1, Bach2, and JunD and a preparedness program involving Fhl2, FosB, Stat6, Srebf2, and MPP7 in memory ILC2s. A mutually regulated balance between these two programs establishes and maintains memory. The preparedness program (e.g., Fhl2) can be activated with a subthreshold cognate stimulation, which down-regulates repressors and activates effector pathways to elicit the memory-driven phenotype.

SUBMITTER: Verma M 

PROVIDER: S-EPMC8176441 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

2021-05-31 | GSE172258 | GEO
| PRJNA722533 | ENA
| S-EPMC6474199 | biostudies-literature
| S-EPMC6778123 | biostudies-literature
| S-EPMC8294935 | biostudies-literature
| S-EPMC4761490 | biostudies-literature
| S-EPMC9253141 | biostudies-literature
2021-09-23 | E-MTAB-9795 | biostudies-arrayexpress
2019-07-01 | GSE114396 | GEO
2020-03-02 | GSE125816 | GEO