Project description:The growth and virulence of bacteria depends upon a number of factors that are secreted into the environment. These factors can diffuse away from the producing cells, to be either lost or used by cells that do not produce them (cheats). Mechanisms that act to reduce the loss of secreted factors through diffusion are expected to be favoured. One such mechanism may be the production of Fap fibrils, needle-like fibres on the cell surface observed in P. aeruginosa, which can transiently bind several secreted metabolites produced by cells. We test whether Fap fibrils help retain a secreted factor, the iron-scavenging molecule pyoverdine, and hence reduce the potential for exploitation by non-producing, cheating cells. We found that: (i) wild-type cells retain more iron-chelating metabolites than fibril non-producers; (ii) purified Fap fibrils can prevent the loss of the iron-chelators PQS ( Pseudomonas quinolone signal) and pyoverdine; and (iii) pyoverdine non-producers have higher fitness in competition with fibril non-producers than with wild-type cells. Our results suggest that by limiting the loss of a costly public good, Fap fibrils may play an important role in stabilizing cooperative production of secreted factors.
Project description:Self-assembly of short de novo designed peptides gives rise to catalytic amyloids capable of facilitating multiple chemical transformations. We show that catalytic amyloids can efficiently hydrolyze paraoxon, a widely used, highly toxic organophosphate pesticide. Moreover, these robust and inexpensive metal-containing materials can be easily deposited on various surfaces producing catalytic flow devices. Finally, functional promiscuity of catalytic amyloids promotes tandem hydrolysis/oxidation reactions. High efficiency discovered in a very small library of peptides suggests an enormous potential for further improvement of catalytic properties both in terms of catalytic efficiency and substrate scope.
Project description:Amyloids are self-assembled protein aggregates that represent a major hallmark of many neurologic and systemic diseases. Among the common features of amyloids is the presence of a high density of multiple binding sites for small molecule ligands, making them an attractive target for design of multimeric binding agents. Here, we demonstrate that noncovalent, intermolecular interactions between a 1:1 mixture of oppositely charged benzothiazole molecules enhances their binding to two different amyloid aggregates: Alzheimer's-related amyloid-β (Aβ) peptides or Parkinson's-related α-synuclein (αS) proteins. We show that this mixture leads to positively cooperative binding to amyloid targets, with up to 10-fold enhancement of binding compared to the uncharged parent compound. The observed enhancement of amyloid binding using noncovalent interactions was similar in magnitude to a benzothiazole dimer to aggregated Aβ. These results represent a novel strategy for designing amyloid-targeting molecules with enhanced affinity, which could aid in the development of new diagnostic or treatment strategies for amyloid-associated diseases.
Project description:FK506 binding protein 51kDa (FKBP51/FKBP5) is part of a mature heat shock protein 90kDa (Hsp90) chaperone complex that preserves tau. Microarray analysis of human brains reveal that FKBP51 gene expression selectively increased with age and Alzheimer's disease, which correlated with demethylation of the regulatory regions in the FKBP5 gene. Moreover, FKBP51 levels significantly correlated with Braak pathological staging. In addition, we show that in brains devoid of FKBP51, tau levels are reduced. Recombinant FKBP51 and Hsp90 synergize to block tau clearance through the proteasome and produce T22-positive tau oligomers. Overexpression of FKBP51 in a tau transgenic mouse model revealed that FKBP51 preserved tau species, including phosphorylated and oligomeric tau that have been linked to Alzheimer's disease pathogenesis. FKBP51 blocked amyloid formation and decreased tangle load in the brain. These alterations in tau turnover and aggregate structure culminated in enhanced neurotoxicity. We propose a model where age-associated increases in FKBP51 levels can out-compete the association of other pro-degradation Hsp90 co-chaperones, resulting in neurotoxic tau accumulation. Thus, strategies aimed at attenuating FKBP51 levels or its interaction with Hsp90 could be therapeutically relevant for Alzheimer's disease and other tauopathies. These AD cases were processed simultaneously with the control cases (young and aged) included in GSE11882 Postmortem brain tissue was collected from ADRC brain banks. Cases were preferentially selected where 3 or more brain regions were available
Project description:Ion channel splice array data from cerebellum brain tissue samples collected from Alzheimer's disease patients. Temporal cortex (Alzheimer's disease affected brain tissue structure) and cerebellum (Alzheimer's disease unaffected brain tissue structure) samples from control subjects were compared to temporal cortex and cerebellum of patients with Alzheimer's disease.
Project description:Alzheimer's disease (AD) is a leading form of dementia where the presence of extra-neuronal plaques of Amyloid-β (Aβ) is a pathological hallmark. However, Aβ peptide is also observed in the intestinal tissues of AD patients and animal models. In this study, it is reported that Aβ monomers can target and disintegrate microbial amyloids of FapC and CsgA formed by opportunistic gut pathogens, Pseudomonas aeruginosa and Escherichia coli, explaining a potential role of Aβ in the gut-brain axis. Employing a zebrafish-based transparent in vivo system and whole-mount live-imaging, Aβ is observed to diffuse into the vasculature and subsequently localize with FapC or CsgA fibrils that were injected into the tail muscles of the fish. FapC aggregates, produced after Aβ treatment (Faβ), present selective toxicity to SH-SY5Y neuronal cells while the intestinal Caco-2 cells are shown to phagocytose Faβ in a non-toxic cellular process. After remodeling by Aβ, microbial fibrils lose their native function of cell adhesion with intestinal Caco-2 cells and Aβ dissolves and detaches the microbial fibrils already attached to the cell membrane. Taken together, this study strongly indicates an anti-biofilm role for Aβ monomers that can help aid in the future development of selective anti-Alzheimer's and anti-infective medicine.
Project description:Ion channel splice array data from temporal cortex brain tissue samples collected from Alzheimer's disease patients. Temporal cortex (Alzheimer's disease affected brain tissue structure) and cerebellum (Alzheimer's disease unaffected brain tissue structure) samples from control subjects were compared to temporal cortex and cerebellum of patients with Alzheimer's disease.