Unknown

Dataset Information

0

Aggregation-free and high stability core-shell polymer nanoparticles with high fullerene loading capacity, variable fullerene type, and compatibility towards biological conditions.


ABSTRACT: Fullerenes have unique structural and electronic properties that make them attractive candidates for diagnostic, therapeutic, and theranostic applications. However, their poor water solubility remains a limiting factor in realizing their full biomedical potential. Here, we present an approach based on a combination of supramolecular and covalent chemistry to access well-defined fullerene-containing polymer nanoparticles with a core-shell structure. In this approach, solvophobic forces and aromatic interactions first come into play to afford a micellar structure with a poly(ethylene glycol) shell and a corannulene-based fullerene-rich core. Covalent stabilization of the supramolecular assembly then affords core-crosslinked polymer nanoparticles. The shell makes these nanoparticles biocompatible and allows them to be dried to a solid and redispersed in water without inducing interparticle aggregation. The core allows a high content of different fullerene types to be encapsulated. Finally, covalent stabilization endows nanostructures with stability against changing environmental conditions.

SUBMITTER: Eom T 

PROVIDER: S-EPMC8179596 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC5379557 | biostudies-literature
| S-EPMC4899770 | biostudies-literature
| S-EPMC3779919 | biostudies-literature
| S-EPMC2535940 | biostudies-literature
| S-EPMC6429423 | biostudies-literature
| S-EPMC3109993 | biostudies-literature
| S-EPMC2268167 | biostudies-literature
| S-EPMC6403727 | biostudies-literature
| S-EPMC6403678 | biostudies-literature
| S-EPMC8070725 | biostudies-literature