Project description:The COVID-19 pandemic and discovery of new mutant strains have a devastating impact worldwide. Patients with severe COVID-19 require various equipment, such as ventilators, infusion pumps, and patient monitors, and a dedicated medical team to operate and monitor the equipment in isolated intensive care units (ICUs). Medical staff must wear personal protective equipment to reduce the risk of infection. This study proposes a tele-monitoring system for isolation ICUs to assist in the monitoring of COVID-19 patients. The tele-monitoring system consists of three parts: medical-device panel image processing, transmission, and tele-monitoring. This system can monitor the ventilator screen with obstacles, receive and store data, and provide real-time monitoring and data analysis. The proposed tele-monitoring system is compared with previous studies, and the image combination algorithm for reconstruction is evaluated using structural similarity index (SSIM) and peak signal-to-noise ratio (PSNR). The system achieves an SSIM score of 0.948 in the left side and a PSNR of 23.414 dB in the right side with no obstacles. It also reduces blind spots, with an SSIM score of 0.901 and a PSNR score of 18.13 dB. The proposed tele-monitoring system is compatible with both wired and wireless communication, making it accessible in various situations. It uses camera and performs live data monitoring, and the two monitoring systems complement each other. The system also includes a comprehensive database and an analysis tool, allowing medical staff to collect and analyze data on ventilator use, providing them a quick, at-a-glance view of the patient's condition. With the implementation of this system, patient outcomes may be improved and the burden on medical professionals may be reduced during the COVID-19 pandemic-like situations.
Project description:Bees are very important for terrestrial ecosystems and, above all, for the subsistence of many crops, due to their ability to pollinate flowers. Currently, the honey bee populations are decreasing due to colony collapse disorder (CCD). The reasons for CCD are not fully known, and as a result, it is essential to obtain all possible information on the environmental conditions surrounding the beehives. On the other hand, it is important to carry out such information gathering as non-intrusively as possible to avoid modifying the bees' work conditions and to obtain more reliable data. We designed a wireless-sensor networks meet these requirements. We designed a remote monitoring system (called WBee) based on a hierarchical three-level model formed by the wireless node, a local data server, and a cloud data server. WBee is a low-cost, fully scalable, easily deployable system with regard to the number and types of sensors and the number of hives and their geographical distribution. WBee saves the data in each of the levels if there are failures in communication. In addition, the nodes include a backup battery, which allows for further data acquisition and storage in the event of a power outage. Unlike other systems that monitor a single point of a hive, the system we present monitors and stores the temperature and relative humidity of the beehive in three different spots. Additionally, the hive is continuously weighed on a weighing scale. Real-time weight measurement is an innovation in wireless beehive-monitoring systems. We designed an adaptation board to facilitate the connection of the sensors to the node. Through the Internet, researchers and beekeepers can access the cloud data server to find out the condition of their hives in real time.
Project description:Defaunation is a global threat to biodiversity that can be counteracted through trophic rewilding, a restoration strategy that promotes self-regulating ecosystems through active reintroductions or passive management. In order to estimate success in restoration initiatives, progress of the rewilding projects is measured and monitored. However, a spatially explicit understanding of rewilding and rewilding potential in a rewilding site has been absent so far. We present a novel approach for monitoring rewilding progress that focuses on a spatially explicit estimate of progress and ecological integrity within rewilding initiatives. This framework uses habitat classification of the site and tracking data of the reintroduced animals, to model their habitat selection. Through this we measure and map realized and potential rewilding. We operationalize the framework in an ongoing rewilding project in the Iberá Wetlands, Corrientes, Argentina. The majority of areas (76%) predicted to be occupied by reintroduced fauna were only predicted to be selected by one species. Of the four species in the rewilding project, only the giant anteater (Myrmecophaga tridactyla) filled the majority of its potential distribution, whereas pampas deer (Ozotoceros bezoarticus), collared peccary (Pecari tajacu) and lowland tapir (Tapirus terrestris) filled less than 23% of theirs. After rewilding we found a 10% increase in the proportion of the study area with high ecological integrity. Through this case study, we showed that this framework can be used to assess the spatial progress of a rewilding site. By incorporating wildlife tracking and satellite-based remote sensing, we are integrating a spatial component to monitoring of rewilding projects that should lead to more detailed understanding of the progress of rewilding. Applying this framework would facilitate decision-making for practitioners and inform species management plans.
Project description:Localization systems are the source of data that allows to evaluate elderly person's behaviour, to draw conclusions concerning his or her health status and wellbeing, and to detect emergency situations. The article contains a description of a system intended for elderly people tracking. Two novel solutions have been implemented in the system: a hybrid localization algorithm and a method for wireless anchor nodes synchronization. The algorithm fuses results of time difference of arrival and received signal strength measurements in ultrawideband (UWB) and Bluetooth Low Energy (BLE) radio interfaces, respectively. The system allows to change the intensity of UWB packets transmission to adapt localization accuracy and energy usage to current needs and applications. In order to simplify the system installation, communication between elements of the system infrastructure instead of wire interfaces is performed over wireless ones. The new wireless synchronization method proposed in the article consists in retransmission of UWB synchronization packets by selected anchor nodes. It allows for extension of the system coverage, which is limited by the short range of UWB transmission. The proposed solution was experimentally verified. The synchronization method was tested in a laboratory, and the whole system's performance was investigated in a typical flat. Exemplary results of the tests performed with older adult participation in their own homes are also included.
Project description:We present the design, fabrication, and testing of a drone-mountable gas sensing platform for environmental monitoring applications. An array of graphene-based field-effect transistors in combination with commercial humidity and temperature sensors are used to relay information by wireless communication about the presence of airborne chemicals. We show that the design, based on an ESP32 microcontroller combined with a 32-bit analog-to-digital converter, can be used to achieve an electronic response similar, within a factor of two, to state-of-the-art laboratory monitoring equipment. The sensing platform is then mounted on a drone to conduct field tests, on the ground and in flight. During these tests, we demonstrate a one order of magnitude reduction in environmental noise by reducing contributions from humidity and temperature fluctuations, which are monitored in real-time with a commercial sensor integrated to the sensing platform. The sensing device is controlled by a mobile application and uses LoRaWAN, a low-power, wide-area networking protocol, for real-time data transmission to the cloud, compatible with Internet of Things (IoT) applications.
Project description:Within the Internet of Things (IoT) and blockchain research, there is a growing interest in decentralizing health monitoring systems, to provide improved privacy to patients, without relying on trusted third parties for handling patients' sensitive health data. With public blockchain deployments being severely limited in their scalability, and inherently having latency in transaction processing, there is room for researching and developing new techniques to leverage the security features of blockchains within healthcare applications. This paper presents a solution for patients to share their biomedical data with their doctors without their data being handled by trusted third party entities. The solution is built on the Ethereum blockchain as a medium for negotiating and record-keeping, along with Tor for delivering data from patients to doctors. To highlight the applicability of the solution in various health monitoring scenarios, we have considered three use-cases, namely cardiac monitoring, sleep apnoea testing, and EEG following epileptic seizures. Following the discussion about the use cases, the paper outlines a security analysis performed on the proposed solution, based on multiple attack scenarios. Finally, the paper presents and discusses a performance evaluation in terms of data delivery time in comparison to existing centralized and decentralized solutions.
Project description:BackgroundMany COVID-19 patients are discharged home from hospital with instructions to self-isolate. This reduces the burden on potentially overwhelmed hospitals. The Royal Melbourne Hospital (RMH) Home Monitoring Programme (HMP) is a model of care for COVID-19 patients which chiefly tracks pulse oximetry and body temperature readings.ObjectiveTo evaluate the feasibility and acceptability of the HMP from a patient perspective.Design, settings and participantsOf 46 COVID-19 patients who used the HMP through RMH during April to August 2020, 16 were invited to participate in this qualitative evaluation study; all accepted, including 6 healthcare workers. Attempts were made to recruit a gender-balanced sample across a range of COVID-19 severities and comorbidities. Participants completed a brief semistructured phone interview discussing their experience of using the HMP.Outcome measures and analysisA thematic analysis of interview data was conducted. Feasibility was defined as the HMP's reported ease of use. Acceptability was considered holistically by reviewing themes in the interview data.ResultsThe HMP allowed clinical deterioration to be recognised as it occurred enabling prompt intervention. All participants reported a positive opinion of the HMP, stating it was highly acceptable and easy to use. Almost all participants said they found using it reassuring. Patients frequently mentioned the importance of the monitoring clinicians as an information conduit. The most suggested improvement was to monitor a broader set of symptoms.ConclusionsThe HMP is highly feasible and acceptable to patients. This model of care could potentially be implemented on a mass-scale to reduce the burden of COVID-19 on hospitals. A key benefit of the HMP is the ability to reassure patients they will receive suitable intervention should they deteriorate while isolating outside of hospital settings.
Project description:Efficient remote monitoring of the patient infected with coronavirus without spread to healthcare workers is the need of the hour. An effectual and faster communication system must be established wherein the healthcare workers at the remote quarantine ward can communicate with healthcare professionals present in specialty hospitals. Incidentally, there is a need to establish a contactless smart cloud-based connection between a specialty hospital and quarantine wards during pandemic situation. This paper proposes an initial contactless web-based tele-health clinical decision support system that integrates near-field communication (NFC) tags and a smart cloud-based structuring tool that enables the quick diagnosis of patients with COVID-19 symptoms and monitors the remotely located quarantine wards during the recent pandemic. The proposed framework consists of three-stages: (i) contactless health parameter extraction from the patient using an NFC tag; (ii) converting medical report into digital text using optical character recognition algorithm and extracting values of relevant medical-parameters using natural language processing; and (iii) smart visualization of key medical parameters. The accuracy of the proposed system from NFC reader until analysis using a novel structuring algorithm deployed in the cloud is more than 94%. Several capabilities of the proposed web-based system were compared with similar systems and tested in an authentic mock clinical setup, and the physicians found that the system is reliable and user friendly.
Project description:The True Colours remote mood monitoring system was developed over a decade ago by researchers, psychiatrists, and software engineers at the University of Oxford to allow patients to report on a range of symptoms via text messages, Web interfaces, or mobile phone apps. The system has evolved to encompass a wide range of measures, including psychiatric symptoms, quality of life, and medication. Patients are prompted to provide data according to an agreed personal schedule: weekly, daily, or at specific times during the day. The system has been applied across a number of different populations, for the reporting of mood, anxiety, substance use, eating and personality disorders, psychosis, self-harm, and inflammatory bowel disease, and it has shown good compliance. Over the past decade, there have been over 36,000 registered True Colours patients and participants in the United Kingdom, with more than 20 deployments of the system supporting clinical service and research delivery. The system has been adopted for routine clinical care in mental health services, supporting more than 3000 adult patients in secondary care, and 27,263 adolescent patients are currently registered within Oxfordshire and Buckinghamshire. The system has also proven to be an invaluable scientific resource as a platform for research into mood instability and as an electronic outcome measure in randomized controlled trials. This paper aimed to report on the existing applications of the system, setting out lessons learned, and to discuss the implications for tailored symptom monitoring, as well as the barriers to implementation at a larger scale.
Project description:The rising prevalence of type 2 diabetes underlines the importance of secondary strategies for the prevention of target organ damage. While access to diabetes education centers and diabetes intensification management has been shown to improve blood glucose control, these services are not available to all that require them, particularly in rural and northern areas. The provision of these services through the Home Care team is an advance that can overcome these barriers. Transfer of blood glucose data electronically from the home to the health care provider may improve diabetes management.The study population will consist of patients with type 2 diabetes with uncontrolled A1c levels living on reserve in the Battlefords region of Saskatchewan, Canada. This pilot study will take place over three phases. In the first phase over three months the impact of the introduction of the Bluetooth enabled glucose monitor will be assessed. In the second phase over three months, the development of guidelines based treatment algorithms for diabetes intensification will be completed. In the third phase lasting 18 months, study subjects will have diabetes intensification according to the algorithms developed.The first phase will determine if the use of the Bluetooth enabled blood glucose devices which can transmit results electronically will lead to changes in A1c levels. It will also determine the feasibility of recruiting subjects to use this technology. The rest of the Diabetes Risk Evaluation and Management Tele-monitoring (DreamTel) study will determine if the delivery of a diabetes intensification management program by the Home Care team supported by the Bluetooth enabled glucose meters leads to improvements in diabetes management.Protocol NCT00325624.