Project description:Fluorescence/luminescence-based techniques play an increasingly important role in the development of test systems for the characterization of future drug candidates, especially in terms of receptor binding in the field of G protein-coupled receptors (GPCRs). In this article, we present the establishment of a homogeneous live cell-based BRET binding assay for the histamine H2 receptor with different fluorescently labeled squaramide-type compounds synthesized in the course of this study. Py-1-labeled ligand 8 (UR-KAT478) was found to be most suitable in BRET saturation binding experiments with respect to receptor affinity (pKd = 7.35) and signal intensity. Real-time kinetic experiments showed a full association of 8 within approximately 30 min and a slow dissociation of the ligand from the receptor. Investigation of reference compounds in BRET-based competition binding with 8 yielded pKi values in agreement with radioligand binding data. This study shows that the BRET binding assay is a versatile test system for the characterization of putative new ligands at the histamine H2 receptor and represents a valuable fluorescence-based alternative to canonical binding assays.
Project description:Steroid hormone receptors play a crucial role in the development and characterization of the majority of breast cancers. These receptors canonically function through homodimerization, but physical interactions between different hormone receptors play a key role in cell functions as well. The estrogen receptor (ERα) and progesterone receptor (PR), for example, are involved in a complex set of interactions known as ERα/PR crosstalk. Here, we developed a valuable panel of nuclear receptor expression plasmids specifically for use in NanoBRET assays to assess nuclear receptor homo- and heterodimerization. We demonstrate the utility of this assay system by assessing ERα/PR physical interaction in the context of the endocrine therapy resistance- associated ERα Y537S mutation. We identify a role of the ERα Y537S mutation beyond that of constitutive activity of the receptor; it also increases ERα/PR crosstalk. In total, the NanoBRET assay provides a novel avenue for investigating hormone receptor crosstalk. Future research may use this system to assess the effects of other clinically significant hormone receptor mutations on hormone receptor crosstalk.
Project description:Continuing with our program to obtain new histamine H3 receptor (H3R) ligands, in this work we present the synthesis, H3R affinity and in silico studies of a series of eight new synthetically accessible purine derivatives. These compounds are designed from the isosteric replacement of the scaffold presented in our previous ligand, pyrrolo[2,3-d]pyrimidine ring, by a purine core. This design also considers maintaining the fragment of bipiperidine at C-4 and aromatic rings with electron-withdrawing groups at N-9, as these fragments are part of the proposed pharmacophore. The in vitro screening results show that two purine derivatives, 3d and 3h, elicit high affinities to the H3R (Ki values of 2.91 and 5.51 nM, respectively). Both compounds are more potent than the reference drug pitolisant (Ki 6.09 nM) and show low toxicity with in vitro models (IC50 > 30 µM on HEK-293, SH-SY5Y and HepG2 cell lines). Subsequently, binding modes of these ligands are obtained using a model of H3R by docking and molecular dynamics studies, thus determining the importance of the purine ring in enhancing affinity due to the hydrogen bonding of Tyr374 to the N-7 of this heterocycle. Finally, in silico ADME properties are predicted, which indicate a promising future for these molecules in terms of their physical-chemical properties, absorption, oral bioavailability and penetration in the CNS.
Project description:Alzheimer's disease (AD) is a neurodegenerative disorder, for which there is no effective cure. Current drugs only slow down the course of the disease, and, therefore, there is an urgent need to find effective therapies that not only treat, but also prevent it. Acetylcholinesterase inhibitors (AChEIs), among others, have been used for years to treat AD. Histamine H3 receptors (H3Rs) antagonists/inverse agonists are indicated for CNS diseases. Combining AChEIs with H3R antagonism in one structure could bring a beneficial therapeutic effect. The aim of this study was to find new multitargetting ligands. Thus, continuing our previous research, acetyl- and propionyl-phenoxy-pentyl(-hexyl) derivatives were designed. These compounds were tested for their affinity to human H3Rs, as well as their ability to inhibit cholinesterases (acetyl- and butyrylcholinesterases) and, additionally, human monoamine oxidase B (MAO B). Furthermore, for the selected active compounds, their toxicity towards HepG2 or SH-SY5Y cells was evaluated. The results showed that compounds 16 (1-(4-((5-(azepan-1-yl)pentyl)oxy)phenyl)propan-1-one) and 17 (1-(4-((6-(azepan-1-yl)hexyl)oxy)phenyl)propan-1-one) are the most promising, with a high affinity for human H3Rs (Ki: 30 nM and 42 nM, respectively), a good ability to inhibit cholinesterases (16: AChE IC50 = 3.60 µM, BuChE IC50 = 0.55 µM; 17: AChE IC50 = 1.06 µM, BuChE IC50 = 2.86 µM), and lack of cell toxicity up to 50 µM.
Project description:The histamine H1 receptor (H1R) has recently been implicated in mediating cell proliferation and cancer progression; therefore, high-affinity H1R-selective fluorescent ligands are desirable tools for further investigation of this behavior in vitro and in vivo. We previously reported a H1R fluorescent ligand, bearing a peptide-linker, based on antagonist VUF13816 and sought to further explore structure-activity relationships (SARs) around the linker, orthostere, and fluorescent moieties. Here, we report a series of high-affinity H1R fluorescent ligands varying in peptide linker composition, orthosteric targeting moiety, and fluorophore. Incorporation of a boron-dipyrromethene (BODIPY) 630/650-based fluorophore conferred high binding affinity to our H1R fluorescent ligands, remarkably overriding the linker SAR observed in corresponding unlabeled congeners. Compound 31a, both potent and subtype-selective, enabled H1R visualization using confocal microscopy at a concentration of 10 nM. Molecular docking of 31a with the human H1R predicts that the optimized peptide linker makes interactions with key residues in the receptor.
Project description:This study examines the properties of a novel series of 4-oxypiperidines designed and synthesized as histamine H3R antagonists/inverse agonists based on the structural modification of two lead compounds, viz., ADS003 and ADS009. The products are intended to maintain a high affinity for H3R while simultaneously inhibiting AChE or/and BuChE enzymes. Selected compounds were subjected to hH3R radioligand displacement and gpH3R functional assays. Some of the compounds showed nanomolar affinity. The most promising compound in the naphthalene series was ADS031, which contained a benzyl moiety at position 1 of the piperidine ring and displayed 12.5 nM affinity at the hH3R and the highest inhibitory activity against AChE (IC50 = 1.537 μM). Eight compounds showed over 60% eqBuChE inhibition and hence were qualified for the determination of the IC50 value at eqBuChE; their values ranged from 0.559 to 2.655 μM. Therapy based on a multitarget-directed ligand combining H3R antagonism with additional AChE/BuChE inhibitory properties might improve cognitive functions in multifactorial Alzheimer's disease.
Project description:Virtual screening offers an efficient alternative to high-throughput screening in the identification of pharmacological tools and lead compounds. Virtual screening is typically based on the matching of target structures or ligand pharmacophores to commercial or in-house compound catalogues. This study provides the first proof-of-concept for our recently reported method where pharmacophores are instead constructed based on the inference of residue-ligand fragments from crystal structures. We demonstrate its unique utility for G protein-coupled receptors, which represent the largest families of human membrane proteins and drug targets. We identified five neutral antagonists and one inverse agonist for the histamine H3 receptor with potencies of 0.7-8.5 μM in a recombinant receptor cell-based inositol phosphate accumulation assay and validated their activity using a radioligand competition binding assay. H3 receptor antagonism is of large therapeutic value and our ligands could serve as starting points for further lead optimisation. The six ligands exhibit four chemical scaffolds, whereof three have high novelty in comparison to the known H3 receptor ligands in the ChEMBL database. The complete pharmacophore fragment library is freely available through the GPCR database, GPCRdb, allowing the successful application herein to be repeated for most of the 285 class A GPCR targets. The method could also easily be adapted to other protein families.
Project description:In the striatum, histamine H3 receptors (H3Rs) are co-expressed with adenosine A2A receptors (A2ARs) in the cortico-striatal glutamatergic afferents and the GABAergic medium-sized spiny neurons that originate the indirect pathway of the basal ganglia. This location allows H3Rs and A2ARs to regulate the striatal GABAergic and glutamatergic transmission. However, whether these receptors can physically interact has not yet been assessed. To test this hypothesis, a heteromer-selective in vitro assay was used to detect functional complementation between a chimeric A2AR302-Gαqi4 and wild-type H3Rs in transfected HEK-293T cells. H3R activation with the agonist RAMH resulted in Ca2+ mobilization (pEC50 7.31 ± 0.23; maximal stimulation, Emax 449 ± 25% of basal) indicative of receptor heterodimerization. Functional H3R-A2AR heteromers were confirmed by co-immunoprecipitation and observations of differential cAMP signaling when both receptors were co-expressed in the same cells. In membranes from rat striatal synaptosomes, H3R activation decreased A2AR affinity for the agonist CGS-21680 (pKi values 8.10 ± 0.04 and 7.70 ± 0.04). Moreover, H3Rs and A2ARs co-immunoprecipitated in protein extracts from striatal synaptosomes. These results support the existence of a H3R-A2AR heteromer with possible physiological implications for the modulation of the intra-striatal transmission.