Association between genetically predicted telomere length and facial skin aging in the UK Biobank: a Mendelian randomization study.
Ontology highlight
ABSTRACT: Are shorter telomeres causal risk factors for facial aging on a large population level? To examine if longer, genetically predicted telomeres were causally associated with less facial aging using Mendelian randomization analysis. Two-sample Mendelian randomization methods were applied to the summary statistics of a genome-wide association study (GWAS) for self-reported facial aging from 417, 772 participants of the UK Biobank data. Twenty single-nucleotide polymorphisms (SNPs) that were of genome-wide significance were selected as instrumental variables for leukocyte telomere length. The main analyses were performed primarily using the random-effects inverse-variance weighted method and were complemented with the MR-Egger regression, weighted median, and weighted mode approaches. The intercept of MR-Egger regression was used to assess horizontal pleiotropy. Longer genetically predicted telomeres were associated with a lower likelihood of facial aging (β = - 0.02, 95% confidence interval: - 0.04, - 0.002). Comparable results were obtained using MR-Egger regression, weighted median, and weighted mode approaches. The intercept of MR-Egger regression was close to zero (0.002) that was not suggestive of horizontal pleiotropy. Our findings provided evidence to support a potential causal relationship between longer genetically predicted telomeres and less facial aging.
SUBMITTER: Zhan Y
PROVIDER: S-EPMC8190204 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA