Unknown

Dataset Information

0

Deciphering an AgRP-serotoninergic neural circuit in distinct control of energy metabolism from feeding.


ABSTRACT: Contrasting to the established role of the hypothalamic agouti-related protein (AgRP) neurons in feeding regulation, the neural circuit and signaling mechanisms by which they control energy expenditure remains unclear. Here, we report that energy expenditure is regulated by a subgroup of AgRP neurons that send non-collateral projections to neurons within the dorsal lateral part of dorsal raphe nucleus (dlDRN) expressing the melanocortin 4 receptor (MC4R), which in turn innervate nearby serotonergic (5-HT) neurons. Genetic manipulations reveal a bi-directional control of energy expenditure by this circuit without affecting food intake. Fiber photometry and electrophysiological results indicate that the thermo-sensing MC4RdlDRN neurons integrate pre-synaptic AgRP signaling, thereby modulating the post-synaptic serotonergic pathway. Specifically, the MC4RdlDRN signaling elicits profound, bi-directional, regulation of body weight mainly through sympathetic outflow that reprograms mitochondrial bioenergetics within brown and beige fat while feeding remains intact. Together, we suggest that this AgRP neural circuit plays a unique role in persistent control of energy expenditure and body weight, hinting next-generation therapeutic approaches for obesity and metabolic disorders.

SUBMITTER: Han Y 

PROVIDER: S-EPMC8192783 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC6248907 | biostudies-literature
2024-02-12 | GSE248391 | GEO
| S-EPMC6978463 | biostudies-literature
| S-EPMC3675096 | biostudies-literature
| S-EPMC5562903 | biostudies-literature
| S-EPMC6934207 | biostudies-literature
| S-EPMC10173804 | biostudies-literature
| S-EPMC3970718 | biostudies-literature
| S-EPMC4599031 | biostudies-literature
| S-EPMC7168768 | biostudies-literature