CSF1/CSF1R Axis Blockade Limits Mesothelioma and Enhances Efficiency of Anti-PDL1 Immunotherapy.
Ontology highlight
ABSTRACT: Colony-Stimulating Factor 1 (CSF1)/Colony-Stimulating Factor Receptor 1 (CSF1R) signaling orchestrates tumor-associated macrophage (TAM) recruitment and polarization towards a pro-tumor M2 phenotype, the dominant phenotype of TAMs infiltrating mesothelioma tumors. We hypothesized that CSF1/CSF1R inhibition would halt mesothelioma growth by targeting immunosuppressive M2 macrophages and unleashing efficient T cell responses. We also hypothesized that CSF1/CSF1R blockade would enhance the efficacy of a PDL1 inhibitor which directly activates CD8+ cells. We tested a clinically relevant CSF1R inhibitor (BLZ945) in mesothelioma treatment using syngeneic murine models. We evaluated the role of CSF1/CSF1R axis blockade in tumor-infiltrating immune subsets. We examined the effect of combined anti-CSF1R and anti-PDL1 treatment in mesothelioma progression. CSF1R inhibition impedes mesothelioma progression, abrogates infiltration of TAMs, facilitates an M1 anti-tumor phenotype and activates tumor dendritic and CD8+ T cells. CSF1R inhibition triggers a compensatory PD-1/PDL1 upregulation in tumor and immune cells. Combined CSF1R inhibitor with an anti-PDL1 agent was more effective in retarding mesothelioma growth compared to each monotherapy. In experimental mesotheliomas, CSF1R inhibition abrogates tumor progression by limiting suppressive myeloid populations and enhancing CD8+ cell activation and acts synergistically with anti-PDL1.
SUBMITTER: Magkouta SF
PROVIDER: S-EPMC8196870 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA