Unknown

Dataset Information

0

Y2O3 Nanoparticles and X-ray Radiation-Induced Effects in Melanoma Cells.


ABSTRACT: The innovative strategy of using nanoparticles in radiotherapy has become an exciting topic due to the possibility of simultaneously improving local efficiency of radiation in tumors and real-time monitoring of the delivered doses. Yttrium oxide (Y2O3) nanoparticles (NPs) are used in material science to prepare phosphors for various applications including X-ray induced photodynamic therapy and in situ nano-dosimetry, but few available reports only addressed the effect induced in cells by combined exposure to different doses of superficial X-ray radiation and nanoparticles. Herein, we analyzed changes induced in melanoma cells by exposure to different doses of X-ray radiation and various concentrations of Y2O3 NPs. By evaluation of cell mitochondrial activity and production of intracellular reactive oxygen species (ROS), we estimated that 2, 4, and 6 Gy X-ray radiation doses are visibly altering the cells by inducing ROS production with increasing the dose while at 6 Gy the mitochondrial activity is also affected. Separately, high-concentrated solutions of 25, 50, and 100 µg/mL Y2O3 NPs were also found to affect the cells by inducing ROS production with the increase of concentration. Additionally, the colony-forming units assay evidenced a rather synergic effect of NPs and radiation. By adding the NPs to cells before irradiation, a decrease of the number of proliferating cell colonies was observed with increase of X-ray dose. DNA damage was evidenced by quantifying the γ-H2AX foci for cells treated with Y2O3 NPs and exposed to superficial X-ray radiation. Proteomic profile confirmed that a combined effect of 50 µg/mL Y2O3 NPs and 6 Gy X-ray dose induced mitochondria alterations and DNA changes in melanoma cells.

SUBMITTER: Porosnicu I 

PROVIDER: S-EPMC8200002 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

2018-06-30 | GSE104965 | GEO
| S-EPMC4726169 | biostudies-literature
2021-12-22 | GSE178553 | GEO
2015-03-03 | GSE61315 | GEO
| PRJNA414248 | ENA
2015-03-03 | E-GEOD-61315 | biostudies-arrayexpress
| S-EPMC2996280 | biostudies-literature
| S-EPMC8403145 | biostudies-literature
| S-EPMC4707346 | biostudies-literature
2019-08-20 | GSE118061 | GEO