Unknown

Dataset Information

0

Type I Interferon Transcriptional Network Regulates Expression of Coinhibitory Receptors in Human T cells.


ABSTRACT: While inhibition of T cell co-inhibitory receptors has revolutionized cancer therapy, the mechanisms governing their expression on human T cells have not been elucidated. Type 1 interferon (IFN-I) modulates T cell immunity in viral infection, autoimmunity, and cancer, and may facilitate induction of T cell exhaustion in chronic viral infection. Here we show that IFN-I regulates co-inhibitory receptor expression on human T cells, inducing PD-1/TIM-3/LAG-3 while surprisingly inhibiting TIGIT expression. High-temporal-resolution mRNA profiling of IFN-I responses enabled the construction of dynamic transcriptional regulatory networks uncovering three temporal transcriptional waves. Perturbation of key transcription factors on human primary T cells revealed unique regulators that control expression of co-inhibitory receptors. We found that the dynamic IFN-I response in vitro closely mirrored T cell features with IFN-I linked acute SARS-CoV-2 infection in human, with high LAG3 and decreased TIGIT expression. Finally, our gene regulatory network identified SP140 as a key regulator for differential LAG3 and TIGIT expression, which were validated at the level of protein expression. The construction of IFN-I regulatory networks with identification of unique transcription factors controlling co-inhibitory receptor expression may provide targets for enhancement of immunotherapy in cancer, infectious diseases, and autoimmunity.

SUBMITTER: Hafler D 

PROVIDER: S-EPMC8202434 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC7605554 | biostudies-literature
| S-EPMC8989655 | biostudies-literature
2022-01-31 | GSE195543 | GEO
2022-01-31 | GSE195540 | GEO
2022-01-31 | GSE195542 | GEO
2022-01-31 | GSE195541 | GEO
| PRJNA801234 | ENA
| PRJNA801421 | ENA
| PRJNA801235 | ENA
| PRJNA801420 | ENA