Unknown

Dataset Information

0

Curcumin inhibits the proliferation and migration of vascular smooth muscle cells by targeting the chemerin / CMKLR1 / LCN2 axis.


ABSTRACT: Atherosclerosis (AS) is a chronic progressive inflammatory disease and a leading cause of death worldwide. Being a novel adipokine, chemerin is reported to be positively correlated with the severity of AS, yet its underlying mechanisms in AS remains elusive. It is well-known that AS development is significantly attributed to abnormal proliferation and migration of vascular smooth muscle cells (VSMCs). Therefore, we investigated the role of the chemerin / chemokine-like receptor 1 (CMKLR1, chemerin receptor) signaling, and the potential therapeutic effect of curcumin in VSMCs proliferation and migration during AS by establishing a high fat diet (HFD) mouse model. We found that CMKLR1 was highly expressed in HFD-induced AS tissues and that its expression level was positively correlated with aortic proliferation. Knockdown of CMKLR1 significantly inhibited VSMCs proliferation and migration, as evidenced by the EdU-incorporation assay, wound healing assay, and the induction of proliferating cell nuclear antigen (PCNA) and matrix metalloproteinase-9 (MMP-9) expression. Furthermore, we discovered that Lipocalin-2 (LCN2) acts as a key factor involved in CMKLR1-mediated VSMCs proliferation and migration via the p38 / MAPK and Wnt / β-catenin signaling pathways, and we demonstrated that curcumin inhibits VSMCs proliferation and migration by inhibiting chemerin / CMKLR1 / LCN2, thereby reducing AS progression. Our findings suggest that chemerin / CMKLR1 activation promotes the development of AS; hence, targeting the chemerin / CMKLR1 / LCN2 signaling pathway may be a reasonable treatment modality for AS.

SUBMITTER: He Y 

PROVIDER: S-EPMC8202847 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC8641690 | biostudies-literature
| S-EPMC3838406 | biostudies-literature
| S-EPMC5959946 | biostudies-literature
| S-EPMC10077469 | biostudies-literature
| S-EPMC4866761 | biostudies-literature
| S-EPMC8268171 | biostudies-literature
| S-EPMC6867952 | biostudies-literature
| S-EPMC6160560 | biostudies-literature
| S-EPMC4638351 | biostudies-literature
| S-EPMC9196942 | biostudies-literature