Unknown

Dataset Information

0

Competing Transfer Pathways in Direct and Indirect Dynamic Nuclear Polarization MAS NMR Experiments on HIV-1 Capsid Assemblies: Implications for Sensitivity and Resolution.


ABSTRACT: Dynamic nuclear polarization-enhanced (DNP) magic angle spinning (MAS) NMR of biological systems is a rapidly growing field. Large signal enhancements make the technique particularly attractive for signal-limited cases, such as studies of complex biological assemblies or at natural isotopic abundance. However, spectral resolution is considerably reduced compared to ambient-temperature non-DNP spectra. Herein, we report a systematic investigation into sensitivity and resolution of 1D and 2D 13C-detected DNP MAS NMR experiments on HIV-1 CA tubular assemblies. We show that the magnitude and sign of signal enhancement as well as the homogeneous line width are strongly dependent on the biradical concentration, the dominant polarization transfer pathway, and the enhancement buildup time. Our findings provide guidance for optimal choice of sample preparation and experimental conditions in DNP experiments.

SUBMITTER: Sergeyev IV 

PROVIDER: S-EPMC8203495 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC3386641 | biostudies-literature
| S-EPMC4890707 | biostudies-literature
| S-EPMC5861987 | biostudies-literature
| S-EPMC4432874 | biostudies-literature
| S-EPMC5547042 | biostudies-literature
| S-EPMC4851575 | biostudies-literature
| S-EPMC6521953 | biostudies-literature
| S-EPMC2829833 | biostudies-literature
| S-EPMC4380770 | biostudies-literature
| S-EPMC5592962 | biostudies-literature