Project description:The planetary boundaries (PBs) represent a well-known concept, which helps identify whether production and consumption systems are environmentally sustainable in absolute terms, namely compared to the Earth's ecological limits and carrying capacity. In this study, the impacts of production and consumption of the European Union in 2010 were assessed by means of life cycle assessment (LCA)-based indicators and compared with the PBs. Five different perspectives were adopted for assessing the impacts: a production perspective (EU Domestic Footprint) and four distinct consumption perspectives, resulting from alternative modelling approaches including both top-down (input-output LCA) and bottom-up (process-based LCA). Life cycle impact assessment (LCIA) results were assessed against LCIA-based PBs, which adapted the PBs framework to the LCIA indicators and metrics of the Environmental Footprint method (EF). Global environmental impacts transgressed several LCIA-based PBs. When assessing the overall environmental impacts of EU consumption compared to the global LCIA-based PBs, impacts of EU consumption related to climate change, particulate matter, land use and mineral resources were close or already transgressed the global boundaries. The EU, with less than 10% of the world population, was close to transgress the global ecological limits. Moreover, when downscaling the global PBs and comparing the impacts per capita for an average EU citizen and a global one, the LCIA-PBs were significantly transgressed in many impact categories. The results are affected by uncertainty mainly due to: (a) the intrinsic uncertainties of the different LCA modelling approaches and indicators; (b) the uncertainties in estimating LCIA-based PBs, due to the difficulties in identifying limits for the Earth's processes and referring them to LCIA metrics. The results may anyway be used to define benchmarks and policy targets to ensure that consumption and production in Europe remains within safe ecological boundaries, as well as to understand the magnitude of the effort needed to reduce the impacts.
Project description:Environmental assessments in green chemistry often rely on simplified metrics that enable comparisons between alternative routes but fail to shed light on whether they are truly sustainable in absolute terms, viz. relative to the Earth's ecological capacity. To expand our currently limited knowledge of the extent to which chemicals are environmentally sustainable, here we analyse 492 chemical products through the lens of seven planetary boundaries representing critical biophysical limits that should never be exceeded. We found that most of them transgress these environmental guardrails, mainly the ones strongly connected to greenhouse gas emissions (i.e., climate change, ocean acidification and biosphere integrity). However, their levels of transgression fail to correlate with their carbon footprints, currently the focus of most studies, implying that chemicals entailing higher greenhouse gas emissions are not necessarily less environmentally sustainable in absolute terms. Our work points towards the need to embrace absolute sustainability criteria in current environmental assessments, which will require agreeing on how to allocate shares of the planet's ecological capacity among anthropogenic activities, including chemicals' production. This work's absolute environmental sustainability assessment (AESA) method, which could complement standard life cycle assessment approaches, might help experimental researchers working in green chemistry develop truly 'green' products. The AESA method should be taken as a starting point to devise holistic approaches for quantifying the absolute environmental impact of chemicals to guide research and policymaking more sensibly.
Project description:Human activities are threatening to push the Earth system beyond its planetary boundaries, risking catastrophic and irreversible global environmental change. Action is urgently needed, yet well-intentioned policies designed to reduce pressure on a single boundary can lead, through economic linkages, to aggravation of other pressures. In particular, the potential policy spillovers from an increase in the global carbon price onto other critical Earth system processes has received little attention to date. To this end, we explore the global environmental effects of pricing carbon, beyond its effect on carbon emissions. We find that the case for carbon pricing globally becomes even stronger in a multi-boundary world, since it can ameliorate many other planetary pressures. It does however exacerbate certain planetary pressures, largely by stimulating additional biofuel production. When carbon pricing is allied with a biofuel policy, however, it can alleviate all planetary pressures.
Project description:The number of publications on environmental footprint indicators has been growing rapidly, but with limited efforts to integrate different footprints into a coherent framework. Such integration is important for comprehensive understanding of environmental issues, policy formulation and assessment of trade-offs between different environmental concerns. Here, we systematize published footprint studies and define a family of footprints that can be used for the assessment of environmental sustainability. We identify overlaps between different footprints and analyse how they relate to the nine planetary boundaries and visualize the crucial information they provide for local and planetary sustainability. In addition, we assess how the footprint family delivers on measuring progress towards Sustainable Development Goals (SDGs), considering its ability to quantify environmental pressures along the supply chain and relating them to the water-energy-food-ecosystem (WEFE) nexus and ecosystem services. We argue that the footprint family is a flexible framework where particular members can be included or excluded according to the context or area of concern. Our paper is based upon a recent workshop bringing together global leading experts on existing environmental footprint indicators.
Project description:The achievement of global sustainable development goals subject to planetary boundaries will mostly be determined by cities as they drive cultures, economies, material use, and waste generation. Locally relevant, applied and quantitative methodologies are critical to capture the complexity of urban infrastructure systems, global inter-connections, and to monitor local and global progress toward sustainability. An urban monitoring (and communications) tool is presented here illustrating that a city-based approach to sustainable development is possible. Following efforts to define and quantify safe planetary boundaries in areas such as climate change, biosphere integrity, and freshwater use, this paper modifies the methodology to propose boundaries from a city's perspective. Socio-economic boundaries, or targets, largely derived from the Sustainable Development Goals are added to bio-physical boundaries. Issues such as data availability, city priorities, and ease of implementation are considered. The framework is trialed for Toronto, Shanghai, Sao Paulo, Mumbai, and Dakar, as well as aggregated for the world's larger cities. The methodology provides an important tool for cities to play a more fulsome and active role in global sustainable development.
Project description:The concept of planetary boundaries identifies a safe space for humanity. Current energy systems are primarily designed with a focus on total cost minimization and bounds on greenhouse gas emissions. Omitting planetary boundaries in energy systems design can lead to energy mixes unable to power our sustainable development. To overcome this conceptual limitation, we here incorporate planetary boundaries into energy systems models, explicitly linking energy generation with the Earth's ecological limits. Taking the United States as a testbed, we found that the least cost energy mix that would meet the Paris Agreement 2 degrees Celsius target still transgresses five out of eight planetary boundaries. It is possible to meet seven out of eight planetary boundaries concurrently by incurring a doubling of the cost compared to the least cost energy mix solution (1.3% of the United States gross domestic product in 2017). Due to the stringent downscaled planetary boundary on biogeochemical nitrogen flow, there is no energy mix in the United States capable of satisfying all planetary boundaries concurrently. Our work highlights the importance of considering planetary boundaries in energy systems design and paves the way for further research on how to effectively accomplish such integration in energy related studies.
Project description:BackgroundStudies investigating diet-related environmental impacts have rarely considered the production method of the foods consumed. The objective of the present study, based on the NutriNet-Santé cohort, was to investigate the relationship between a provegetarian score and diet-related environmental impacts. We also evaluated potential effect modifications on the association between a provegetarian score and the environmental impacts of organic food consumption.MethodsFood intake and organic food consumption ratios were obtained from 34,442 French adults using a food frequency questionnaire, which included information on organic food consumption for each group. To characterize the overall structure of the diets, a provegetarian score was used to identify preferences for plant-based products as opposed to animal-based products. Moreover, three environmental indicators were used to assess diet-related environmental impacts: greenhouse gas (GHG) emissions, cumulative energy demand (CED), and land occupation. Environmental impacts were assessed using production life cycle assessment (LCA) at the farm level. Associations between provegetarian score quintiles, the level of organic food consumption, and environmental indicators were analyzed using ANCOVAs adjusted for energy, sex, and age.ResultsParticipants with diets rich in plant-based foods (fifth quintile) were more likely to be older urban dwellers, to hold a higher degree in education, and to be characterized by an overall healthier lifestyle and diet. A higher provegetarian score was associated with lower environmental impacts (GHG emissionsQ5vsQ1 = 838/1,664 kg CO2eq/year, -49.6%, P < 0.0001; CEDQ5vsQ1 = 4,853/6,775 MJ/year, -26.9%, P < 0.0001; land occupationQ5vsQ1 = 2,420/4,138 m2/year, -41.5%, P < 0.0001). Organic food consumption was also an important modulator of the relationship between provegetarian dietary patterns and environmental impacts but only among participants with diets rich in plant-based products.ConclusionFuture field studies should endeavor to integrate all the components of a sustainable diet, i.e., both diet composition and production methods.
Project description:In this contribution, we study the extent to which 68 scenarios for microalgae biofuels could help the heavy-duty transport sector operate within planetary boundaries. The proposed scenarios are built considering a range of alternative configurations based on three types of fuel production processes (i.e., transesterification, hydrodeoxygenation, and hydrothermal liquefaction), different carbon sources (such as natural gas power plants and direct air capture), byproduct treatments, and two electricity mixes. Our results reveal that microalgae biofuels could significantly reduce the environmental and human health impacts of the business-as-usual (fossil-based) heavy-duty transport sector. Moreover, relative to standard biofuels that show large land-use requirements, we find that microalgae biofuels also decrease the damage on biosphere integrity substantially. Notably, pathways resorting to hydrodeoxygenation of microalgae oil and direct air capture and carbon storage could reduce the current impact induced globally on climate change by the heavy transport by 77%, while attaining six-fold reductions in biosphere integrity impacts, both relative to conventional biofuels.
Project description:Green hydrogen, i.e., produced from renewable resources, is attracting attention as an alternative fuel for the future of heavy road transport and long-distance driving. However, the benefits linked to zero pollution at the usage stage can be overturned when considering the upstream processes linked to the raw materials and energy requirements. To better understand the global environmental implications of fuelling heavy transport with hydrogen, we quantified the environmental impacts over the full life cycle of hydrogen use in the context of the Planetary Boundaries (PBs). The scenarios assessed cover hydrogen from biomass gasification (with and without carbon capture and storage [CCS]) and electrolysis powered by wind, solar, bioenergy with CCS, nuclear, and grid electricity. Our results show that the current diesel-based-heavy transport sector is unsustainable due to the transgression of the climate change-related PBs (exceeding standalone by two times the global climate-change budget). Hydrogen-fuelled heavy transport would reduce the global pressure on the climate change-related PBs helping the transport sector to stay within the safe operating space (i.e., below one-third of the global ecological budget in all the scenarios analysed). However, the best scenarios in terms of climate change, which are biomass-based, would shift burdens to the biosphere integrity and nitrogen flow PBs. In contrast, burden shifting in the electrolytic scenarios would be negligible, with hydrogen from wind electricity emerging as an appealing technology despite attaining higher carbon emissions than the biomass routes.
Project description:The exponential development in knowledge on the health and environmental concerns linked to conventional denim processing is directly responsible for the continuous increase in demand for the exploitation of sustainable denim. Research is essential to explore alternative methods to reduce the environmental impact caused by these industries. This review examines the many sustainable ways to produce denim, keeping in mind the problems that the denim industry is now facing in finding alternatives to conventional manufacturing practices. The most current advancements in environmentally friendly dyeing techniques for denim have been extensively discussed. These processes include the production of indigo from bacteria as well as different dyeing processes, such as digital spray, microbially assisted dyeing, and foam dyeing denim with indigo. In addition, this review covers the many environmentally friendly finishing methods for denim garments, such as ozone fading, e-flow, enzyme-based bleaching, water, laser fading, and so on. Finally, it is described how the chemical and mechanical processes used to finish denim might affect the amount of microplastics and microfibers released from the denim garment during domestic washing. As a result, the content presented in this review aims to address the importance of sustainable denim processing, that is, something that can be rethought, reevaluated, renewed, and restructured within the scope of conventional denim processes, while taking eco-responsible solutions for increased environmental sustainability into account.