Ontology highlight
ABSTRACT: Introduction
Sickle cell disease (SCD) is a monogenic disease and it is estimated that 300,000 infants are born annually with it. Most treatments available are only palliative, whereas the allogeneic hematopoietic stem cell transplantation offers the only potential cure for SCD.Objective
Generation of human autologous cells, when coupled with induced pluripotent stem cell (iPSC) technology, is a promising approach for developing study models. In this study, we provide a simple and efficient model for generating hematopoietic cells using iPSCs derived from a sickle cell anemia patient and an inexpensive in-house-prepared medium.Method
This study used iPSCs previously generated from peripheral blood mononuclear cells (PBMCs) from a patient with sickle cell anemia (iPSC_scd). Hematopoietic and erythroid differentiation was performed in two steps. Firstly, with the induction of hematopoietic differentiation through embryoid body formation, we evaluated the efficiency of two serum-free media; and secondly, the induction of hematopoietic stem/progenitor cells to erythroid progenitor cells was performed.Results
The patient-specific cell line generated CD34+/CD45+ and CD45+/CD43+ hematopoietic stem/progenitor cells and erythroid progenitors, comprising CD36+, CD71+ and CD235a+ populations, as well as the formation of hematopoietic colonies, including erythroid colonies, in culture in a semi-solid medium.Conclusion
In conjunction, our results described a simple serum-free platform to differentiate human the iPSCs into hematopoietic progenitor cells. This platform is an emerging application of iPSCs in vitro disease modeling, which can significantly improve the search for new pharmacological drugs for sickle cell disease.
SUBMITTER: Paes BCMF
PROVIDER: S-EPMC8211631 | biostudies-literature |
REPOSITORIES: biostudies-literature