Unknown

Dataset Information

0

Engineering human hepato-biliary-pancreatic organoids from pluripotent stem cells.


ABSTRACT: Human organoids are emerging as a valuable resource to investigate human organ development and disease. The applicability of human organoids has been limited, partly due to the oversimplified architecture of the current technology, which generates single-tissue organoids that lack inter-organ structural connections. Thus, engineering organoid systems that incorporate connectivity between neighboring organs is a critical unmet challenge in an evolving organoid field. Here, we describe a protocol for the continuous patterning of hepatic, biliary and pancreatic (HBP) structures from a 3D culture of human pluripotent stem cells (PSCs). After differentiating PSCs into anterior and posterior gut spheroids, the two spheroids are fused together in one well. Subsequently, self-patterning of multi-organ (i.e., HBP) domains occurs within the boundary region of the two spheroids, even in the absence of any extrinsic factors. Long-term culture of HBP structures induces differentiation of the domains into segregated organs complete with developmentally relevant invagination and epithelial branching. This in-a-dish model of human hepato-biliary-pancreatic organogenesis provides a unique platform for studying human development, congenital disorders, drug development and therapeutic transplantation. More broadly, our approach could potentially be used to establish inter-organ connectivity models for other organ systems derived from stem cell cultures.

SUBMITTER: Koike H 

PROVIDER: S-EPMC8212777 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC8669107 | biostudies-literature
| S-EPMC7332712 | biostudies-literature
| S-EPMC8461636 | biostudies-literature
| S-EPMC5269590 | biostudies-literature
| S-EPMC7643931 | biostudies-literature
| S-EPMC3677304 | biostudies-literature
| S-EPMC7904529 | biostudies-literature
| S-EPMC5159864 | biostudies-literature
| S-EPMC10212712 | biostudies-literature
| S-EPMC7182037 | biostudies-literature