Project description:G protein-coupled receptors (GPCRs) represent the largest membrane protein family implicated in the therapeutic intervention of a variety of diseases including cancer. Exploration of biological actions of orphan GPCRs may lead to the identification of new targets for drug discovery. This study investigates potential roles of GPR160, an orphan GPCR, in the pathogenesis of prostate cancer. The transcription levels of GPR160 in the prostate cancer tissue samples and cell lines, such as PC-3, LNCaP, DU145 and 22Rv1 cells, were significantly higher than that seen in normal prostate tissue and cells. Knockdown of GPR160 by lentivirus-mediated short hairpin RNA constructs targeting human GPR160 gene (ShGPR160) resulted in prostate cancer cell apoptosis and growth arrest both in vitro and in athymic mice. Differential gene expression patterns in PC-3 cells infected with ShGPR160 or scramble lentivirus showed that 815 genes were activated and 1193 repressed. Functional annotation of differentially expressed genes (DEGs) revealed that microtubule cytoskeleton, cytokine activity, cell cycle phase and mitosis are the most evident functions enriched by the repressed genes, while regulation of programmed cell death, apoptosis and chemotaxis are enriched significantly by the activated genes. Treatment of cells with GPR160-targeting shRNA lentiviruses or duplex siRNA oligos increased the transcription of IL6 and CASP1 gene significantly. Our data suggest that the expression level of endogenous GPR160 is associated with the pathogenesis of prostate cancer.
Project description:UNLABELLED:Prostate cancer is the second most common form of cancer in males, affecting one in eight men by the time they reach the age of 70 years. Current diagnostic tests for prostate cancer have significant problems with both false negatives and false positives, necessitating the search for new molecular markers. A recent investigation of endosomal and lysosomal proteins revealed that the critical process of endosomal biogenesis might be altered in prostate cancer. Here, a panel of endosomal markers was evaluated in prostate cancer and nonmalignant cells and a significant increase in gene and protein expression was found for early, but not late endosomal proteins. There was also a differential distribution of early endosomes, and altered endosomal traffic and signaling of the transferrin receptors (TFRC and TFR2) in prostate cancer cells. These findings support the concept that endosome biogenesis and function are altered in prostate cancer. Microarray analysis of a clinical cohort confirmed the altered endosomal gene expression observed in cultured prostate cancer cells. Furthermore, in prostate cancer patient tissue specimens, the early endosomal marker and adaptor protein APPL1 showed consistently altered basement membrane histology in the vicinity of tumors and concentrated staining within tumor masses. These novel observations on altered early endosome biogenesis provide a new avenue for prostate cancer biomarker investigation and suggest new methods for the early diagnosis and accurate prognosis of prostate cancer. IMPLICATIONS:This discovery of altered endosome biogenesis in prostate cancer may lead to novel biomarkers for more precise cancer detection and patient prognosis.
Project description:Prostate cancer (CaP) is the most common type of tumour disease in men. Early diagnosis of cancer of the prostate is very important, because the sooner the cancer is detected, the better it is treated. According to that fact, there is great interest in the finding of new markers including amino acids, proteins or nucleic acids. Prostate specific antigen (PSA) is commonly used and is the most important biomarker of CaP. This marker can only be detected in blood and its sensitivity is approximately 80%. Moreover, early stages cannot be diagnosed using this protein. Currently, there does not exist a test for diagnosis of early stages of prostate cancer. This fact motivates us to find markers sensitive to the early stages of CaP, which are easily detected in body fluids including urine. A potential is therefore attributed to the non-protein amino acid sarcosine, which is generated by glycine-N-methyltransferase in its biochemical cycle. In this review, we summarize analytical methods for quantification of sarcosine as a CaP marker. Moreover, pathways of the connection of synthesis of sarcosine and CaP development are discussed.
Project description:BackgroundProstate cancer (PCa) is one of the most lethal cancers in male individuals. The synaptosome associated protein 25 (SNAP25) gene is a key mediator of multiple biological functions in tumors. However, its significant impact on the prognosis in PCa remains to be elucidated.MethodsWe performed a comprehensive analysis of the Cancer Genome Atlas dataset (TCGA) to identify the differentially expressed genes between PCa and normal prostate tissue. We subjected the differentially expressed genes to gene ontology analysis and Kyoto Encyclopedia of Genes and Genomes functional analysis, and constructed a protein-protein interaction network. We then screened for pivotal genes to identify the hub genes of prognostic significance by performing Cox regression analysis. We identified SNAP25 as one such gene and analyzed the relationship between its expression in PCa to poor prognosis using GEPIA interactive web server.ResultsTCGA database demonstrated that SNAP25 was significantly downregulated in PCa. The progressive decrease in SNAP25 expression with the increase in the clinical staging and grading of PCa demonstrates that reduced SNAP25 expression considerably exacerbates the clinical presentation. Our findings confirm that SNAP25 expression strongly correlates with overall survival, which was determined using the Gleason score. We also validated the role of SNAP25 expression in the prognosis of patients with PCa. We used Gene Set Enrichment and Gene Ontology analyses to evaluate the function of SNAP25 and further explored the association between SNAP25 expression and tumor-infiltrating immune cells using the Tumor Immune Assessment Resource database. We found for the first time that SNAP25 is involved in the activation, differentiation, and migration of immune cells in PCa. Its expression was positively correlated with immune cell infiltration, including B cells, CD8+ T cells, CD4+ T cells, neutrophils, dendritic cells, macrophages, and natural killer cells. SNAP25 expression also positively correlated with chemokines/chemokine receptors, suggesting that SNAP25 may regulate the migration of immune cells. In addition, our experimental results verified the low expression of SNAP25 in PCa cells.ConclusionOur findings indicate a relationship between SNAP25 expression and PCa, demonstrating that SNAP25 is a potential prognostic biomarker due to its vital role in immune infiltration.
Project description:Background and Objectives: Over decades, prostate cancer (PCa) has become one of the leading causes of cancer mortality in men. Extensive evidence exists that microRNAs (miRNAs or miRs) are key players in PCa and a new class of non-invasive cancer biomarkers. Materials and Methods: We performed miRNA profiling in plasma and tissues of PCa patients and attempted the validation of candidate individual miRs as biomarkers. Results: The comparison of tissue and plasma profiling results revealed five commonly dysregulated miRs, namely, miR-130a-3p, miR-145-5p, miR-148a-3p, miR-150-5p, and miR-365a-3p, of which only three show concordant changes-miR-130a-3p and miR-150-5p were downregulated and miR-148a-3p was upregulated in both tissue and plasma samples, respectively. MiR-150-5p was validated as significantly downregulated in both plasma and tissue cancer samples, with a fold change of -2.697 (p < 0.001), and -1.693 (p = 0.035), respectively. ROC analysis showed an area under the curve (AUC) of 0.817 (95% CI: 0.680-0.995) for plasma samples and 0.809 (95% CI: 0.616-1.001) for tissue samples. Conclusions: We provide data indicating that miR-150-5p plasma variations in PCa patients are associated with concordant changes in prostate cancer tissues; however, given the heterogeneous nature of previous findings of miR-150-5p expression in PCa cells, additional future studies of a larger sample size are warranted in order to confirm the biomarker potential and role of miRNA-150-5p in PCa biology.
Project description:Prostate cancer (PCa) is the most commonly diagnosed cancer as well as the greatest source of cancer-related mortality in males of African ancestry (MoAA). Interestingly, this has been shown to be associated with single nucleotide polymorphisms around regions 2 and 3 of the 8q24 human chromosomal region. The non-protein coding gene locus Plasmacytoma Variant Translocation 1 (PVT1) is located at 8q24 and is overexpressed in PCa and, therefore, is also a candidate biomarker to explain the well-known disparity in this group. PVT1 has at least 12 exons that make separate transcripts which may have different functions, all of which are at present unknown in PCa. Our aim was to determine if any PVT1 transcripts play a role in aggressiveness and racial disparity in PCa. We used a panel of seven PCa cell lines including three derived from MoAA. Ribonucleic acid extraction, complementary deoxyribonucleic acid synthesis, and quantitative polymerase chain reaction (qPCR) were performed to evaluate expression of all 12 PVT1 exons. Each qPCR was performed in quadruplicates. At least four separate qPCR experiments were performed. Expression of PVT1 exons was inconsistent except for exon 9. There was no significant difference in exon 9 expression between cell lines derived from Caucasian males (CM), and an indolent cell line derived from MoAA. However, exon 9 expression in the aggressive MDA PCa 2b and E006AA-hT cell lines derived from MoAA was significantly higher than in other cell lines. Consequently, we observed differential expression of exon 9 of PVT1 in a manner that suggests that PVT1 exon 9 may be associated with aggressive PCa in MoAA.
Project description:IntroductionProstate cancer (PC) is one of the most frequently diagnosed cancers in males. MiR-153, as a member of the microRNA (miRNA) family, plays an important role in PC. This study aims to explore the expression and possible molecular mechanisms of the miR-153 action.MethodsFormalin-fixed paraffin-embedded (FFPE) tissues were collected from prostatectomy specimens of 29 metastatic and 32 initial stage PC patients. Expression levels of miR-153 were measured using real-time reverse transcription polymerase chain reaction (qRT-PCR). 2-ΔΔCT method was used for quantitative gene expression assessment. The candidate target genes for miR-153 were predicted by TargetScan. Mutations in target genes of miR-153 were identified using exome sequencing. Protein-protein interaction (PPI) networks, Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to investigate the potential molecular mechanisms of miR-153 in PC.ResultsMiR-153 was significantly up-regulated in PC tissues compared to non-cancerous tissues. The analysis of correlation between the expression level of miR-153 and clinicopathological factors revealed a statistically significant correlation with the stage of the tumor process according to tumor, node, metastasis (TNM) staging system (p = 0.0256). ROC curve analysis was used to evaluate the predictive ability of miR-153 for metastasis development and it revealed miR-153 as a potential prognostic marker (AUC = 0.85; 95%CI 0.75-0.95; sensitivity = 0.72, specificity = 0.86)). According to logistic regression model the high expression of miR-153 increased the risk of metastasis development (odds ratios = 3.14, 95% CI 1.62-8.49; p-value = 0.006). Whole exome sequencing revealed nonsynonymous somatic mutations in collagen type IV alpha 1 (COL4A1), collagen type IV alpha 3 (COL4A3), forkhead box protein O1 (FOXO1), 2-hydroxyacyl-CoA lyase 1 (HACL1), hypoxia-inducible factor 1-alpha (HIF-1A), and nidogen 2 (NID2) genes. Moreover, KEGG analysis revealed that the extracellular matrix-receptor (ECM-receptor) interaction pathway is mainly involved in PC.ConclusionMiR-153 is up-regulated in PC tissues and may play an important role in aggressive PC by targeting potential target genes.
Project description:Early detection of prostate cancer (PC) is paramount as localized disease is generally curable, while metastatic PC is generally incurable. There is a need for improved, minimally invasive biomarkers as current diagnostic tools are inaccurate, leading to extensive overtreatment while still missing some clinically significant cancers. Consequently, we profiled the expression levels of 92 selected microRNAs by RT-qPCR in plasma samples from 753 patients, representing multiple stages of PC and non-cancer controls. First, we compared plasma miRNA levels in patients with benign prostatic hyperplasia (BPH) or localized prostate cancer (LPC), versus advanced prostate cancer (APC). We identified several dysregulated microRNAs with a large overlap of 59 up/down-regulated microRNAs between BPH versus APC and LPC versus APC. Besides identifying several novel PC-associated dysregulated microRNAs in plasma, we confirmed the previously reported upregulation of miR-375 and downregulation of miR-146a-5p. Next, by randomly splitting our dataset into a training and test set, we identified and successfully validated a novel four microRNA diagnostic ratio model, termed bCaP (miR-375*miR-33a-5p/miR-16-5p*miR-409-3p). Combined in a model with prostate specific antigen (PSA), digital rectal examination status, and age, bCaP predicted the outcomes of transrectal ultrasound (TRUS)-guided biopsies (negative vs. positive) with greater accuracy than PSA alone (Training: area under the curve (AUC), model = 0.84; AUC, PSA = 0.63. Test set: AUC, model = 0.67; AUC, PSA = 0.56). It may be possible in the future to use this simple and minimally invasive bCaP test in combination with existing clinical parameters for a more accurate selection of patients for prostate biopsy.
Project description:To screen target gene cluster by bioinformatics analysis and verify them by in vitro experiment and clinicopathological correlation analysis. We try to find a new biomarker with prognostic value for prostate cancer (PCa). 42 candidate marker genes were constructed by protein protein interaction (PPI) network and enriched by KEGG pathway to find out the gene cluster we are interested in. Prognostic model was established to preliminarily analyze the prognostic value of this gene cluster in PCa, and Cox risk regression was used for comparative analysis. Immunohistochemistry was used to detect the expression of each gene in clinical tissue microarray. Finally, we analyzed the correlation between each gene and their clinicopathological features of PCa combined with TCGA clinical data. Based on the analysis of PPI and KEGG, we found the target gene cluster (FCGR3A, HAVCR2, CCR7 and CD28). Prognostic model analysis showed that this gene cluster had the ability to predict biochemical recurrence, and the survival rate and ROC analysis showed favorable prediction effect. Univariate Cox regression analysis showed that the risk scores of Gleason score (GS), T stage, N stage and PSA were significantly different (P<0.05), and the risk ratio of high expression was 2.30 times that of low expression (P=0.004). However, it was not statistically significant in multivariate Cox regression analysis (P>0.05). The results of tissue microarray showed that FCGR3A and HAVCR2 were highly expressed in PCa (P<0.01), while the expression of CCR7 and CD28 had no significant difference (P>0.05). Kaplan-Meier analysis showed that there was significant difference in BCR free survival of FCGR3A and HAVCR2 (FCGR3A, P=0.010; HAVCR2, P=0.018), while the expression of CCR7 and CD28 had no significant difference on the survival and prognosis of PCa patients (P>0.05). TCGA clinical data analysis found that the expression of FCGR3A had a unique correlation with the clinicopathological features of PCa, which was closely related to the tumor stage. The expression of FCGR3A is related to BCR free survival of PCa patients. Therefore, FCGR3A is a new biomarker with potential prognostic value of PCa.